Differences between revisions 63 and 89 (spanning 26 versions)
Revision 63 as of 2012-02-02 18:42:45
Size: 9005
Editor: a91-155-176-245
Comment: Delete extra ending brace
Revision 89 as of 2015-01-04 23:36:49
Size: 5606
Editor: JarnoSuni
Comment: Make the script work even with set -o nounset (or set -u)
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
Line 9: Line 10:
Line 18: Line 18:
set -o nounset
Line 19: Line 20:
file="" file=
Line 22: Line 23:
while :
do
while [ "$#" -gt 0 ]; do
Line 25: Line 25:
 -h | --help | -\?)
     # Call your Help() or usage() function here.
     exit 0 # This not an error, User asked help. Don't do "exit 1"
     ;;
 -f | --file)
     file=$2 # You might want to check if you really got FILE
     shift 2
     ;;
 --file=*)
     file=${1#*=} # Delete everything up till "="
     shift
         ;;
 -v | --verbose)
     # Each instance of -v adds 1 to verbosity
     verbose=$((verbose+1))
     shift
     ;;
 --) # End of all options
     shift
     break
     ;;
 -*)
     echo "WARN: Unknown option (ignored): $1" >&2
     shift
     ;;
 *) # no more options. Stop while loop
     break
     ;;
        -h|-\?|--help) # Call a "show_help" function to display a synopsis, then exit.
            show_help
            exit
            ;;
        -f|--file) # Takes an option argument, ensuring it has been specified.
            if [ "$#" -gt 1 ]; then
                file=$2
                shift 2
                continue
            else
                echo 'ERROR: Must specify a non-empty "--file FILE" argument.' >&2
                exit 1
            fi
            ;;
        --file=?*)
            file=${1#*=} # Delete everything up to "=" and assign the remainder.
            ;;
        --file=) # Handle the case of an empty --file=
            echo 'ERROR: Must specify a non-empty "--file FILE" argument.' >&2
            exit 1
            ;;
        -v|--verbose)
            verbose=$((verbose + 1)) # Each -v argument adds 1 to verbosity.
            ;;
        --) # End of all options.
            shift
            break
            ;;
        -?*)
            printf 'WARN: Unknown option (ignored): %s\n' "$1" >&2
            ;;
        *) # Default case: If no more options then break out of the loop.
            break
Line 54: Line 59:

    shift
Line 56: Line 63:
# Suppose some options are required. Check that we got them.
# Suppose --file is a required option. Check that it has been set.
Line 59: Line 65:
    echo "ERROR: option '--file FILE' not given. See --help" >&2
    return 1
    echo 'ERROR: option "--file FILE" not given. See --help.' >&2
    exit 1
Line 67: Line 73:
Line 70: Line 75:
Some Bash programmers like to write this at the beginning of their scripts to guard against unused variables:

{{{
    set -u # or, set -o nounset
}}}

The use of this breaks the loop above, as "$1" may not be set upon entering the loop. There are two solutions to this issue:

 1. Stop using `-u`
 1. Replace `case $1 in` with `case ${1+$1} in` (as well as bandaging all the other code that `set -u` breaks).
Line 82: Line 76:

'''N
ever use getopt(1).''' `getopt` cannot handle empty arguments strings, or arguments with embedded whitespace. Please forget that it ever existed.
Unless it's the version from util-linux, and you use its advanced mode, '''never use getopt(1).''' Traditional versions of `getopt` cannot handle empty argument strings, or arguments with embedded whitespace.
Line 90: Line 83:
# A POSIX variable
OPTIND=1 # Reset in case getopts has been used previously in the shell.
# Usage info
show_help() {
cat << EOF
Usage: ${0##*/} [-hv] [-f OUTFILE] [FILE]...
Do stuff with FILE and write the result to standard output. With no FILE
or when FILE is -, read standard input.

    -h display this help and exit
    -f OUTFILE write the result to OUTFILE instead of standard output.
    -v verbose mode. Can be used multiple times for increased
                verbosity.
EOF
}
Line 97: Line 101:
while getopts "h?vf:" opt; do OPTIND=1 # Reset is necessary if getopts was used previously in the script. It is a good idea to make this local in a function.
while getopts "hvf:" opt; do
Line 99: Line 104:
 h|\?)
     show_help
     exit 0
     ;;
 v) verbose=1
     ;;
 f) output_file=$OPTARG
     ;;
        h)
            show_help
            exit 0
            ;;
        v) verbose=$((verbose+1))
            ;;
        f) output_file=$OPTARG
            ;;
        '?')
            show_help >&2
            exit 1
            ;;
Line 109: Line 118:
shift "$((OPTIND-1))" # Shift off the options and optional --.
Line 110: Line 120:
shift $((OPTIND-1))

[ "$1" = "--" ] && shift

echo "verbose=$verbose, output_file='$output_file', Leftovers: $@"
printf 'verbose=<%d>\noutput_file=<%s>\nLeftovers:\n' "$verbose" "$output_file"
printf '<%s>\n' "$@"
Line 118: Line 125:
The advantages of `getopts` are:
Line 119: Line 127:
The disadvantage of `getopts` is that it can only handle short options (`-h`) without trickery. It handles `-vf filename` in the expected Unix way, automatically. `getopts` is a good candidate because it is portable and e.g. also works in dash.  1. It's portable, and will work in any POSIX shell e.g. dash.
 1. It can handle things like `-vf filename` in the expected Unix way, automatically.
 1. It understands `--` as the option terminator and more generally makes sure, options are parsed like for any standard command.
 1. With some implementations, the error messages will be localised in the language of the user.

The disadvantage of `getopts` is that (except for ksh93 `getopts`) it can only handle short options (`-h`, not `--help`) without trickery and cannot handle options with optional arguments à la GNU.
Line 125: Line 138:
Here is an example which claims to parse long options with `getopts`. The basic idea is quite simple: just put "-:" into the optstring. This trick requires a shell which permits the option-argument (i.e. the filename in "-f filename") to be concatenated to the option (as in "-ffilename"). The [[http://pubs.opengroup.org/onlinepubs/9699919799/utilities/getopts.html|POSIX standard]] says there must be a space between them; bash and dash permit the "-ffilename" variant, but one should not rely on this leniency if attempting to write a portable script.

{{{#!highlight bash
#!/bin/bash
# Uses bash extensions. Not portable as written.

optspec=":h-:"

while getopts "$optspec" optchar
do
    case "${optchar}" in
 -)
     case "${OPTARG}" in
       loglevel)
    eval val="\$${OPTIND}"; OPTIND=$(( $OPTIND + 1 ))
    echo "Parsing option: '--${OPTARG}', value: '${val}'" >&2
    ;;
       loglevel=*)
    val=${OPTARG#*=}
    opt=${OPTARG%=$val}
    echo "Parsing option: '--${opt}', value: '${val}'" >&2
    ;;
     esac
     ;;
 h)
     echo "usage: $0 [--loglevel[=]<value>]" >&2
     exit 2
     ;;
    esac
done

# End of file
}}}

In practice, this example is so obfuscated that it may be preferable to add concatenated option support (like `-vf filename`) to a manual parsing loop instead, if that was the only reason for using `getopts`.

=== Silly repeated brute-force scanning ===

Another approach is to check options with `if` statements "on demand". A function like this one may be useful:

{{{#!highlight bash
#!/bin/bash

HaveOpt ()
{
    local needle=$1
    shift

    while [[ $1 == -* ]]
    do
 # By convention, "--" means end of options.
 case "$1" in
     --) return 1 ;;
     $needle) return 0 ;;
 esac

 shift
    done

    return 1
}

HaveOpt --quick "$@" && echo "Option quick is set"

# End of file
}}}

and it will work if script is run as:

 * YES: ./script --quick
 * YES: ./script -other --quick

but will stop on first argument with no "-" in front (or on --):

 * NO: ./script -bar foo --quick
 * NO: ./script -bar -- --quick

Of course, this approach (iterating over the argument list every time you want to check for one) is far less efficient than just iterating once and setting flag variables.

It also spreads the options throughout the program. The literal option `--quick` may appear a hundred lines down inside the main body of the program, nowhere near any other option name. This is a nightmare for maintenance.

=== Complex nonstandard add-on utilities ===

[[http://bhepple.freeshell.org/oddmuse/wiki.cgi/process-getopt|bhepple]] suggests the use of [[http://sourceforge.net/projects/process-getopt/|process-getopt]] (GPL licensed) and offers this example code:

{{{
PROG=$(basename $0)
VERSION='1.2'
USAGE="A tiny example using process-getopt(1)"

# call process-getopt functions to define some options:
source process-getopt

SLOT=""
SLOT_func() { [ "${1:-""}" ] && SLOT="yes"; } # callback for SLOT option
add_opt SLOT "boolean option" s "" slot

TOKEN=""
TOKEN_func() { [ "${1:-""}" ] && TOKEN="$2"; } # callback for TOKEN option
add_opt TOKEN "this option takes a value" t n token number

add_std_opts # define the standard options --help etc:

TEMP=$(call_getopt "$@") || exit 1
eval set -- "$TEMP" # just as with getopt(1)

# remove the options from the command line
process_opts "$@" || shift "$?"

echo "SLOT=$SLOT"
echo "TOKEN=$TOKEN"
echo "args=$@"
}}}

Here, all information about each option is defined in one place making for much easier authoring and maintenance. A lot of the dirty work is handled automatically and standards are obeyed as in getopt(1) - because it calls getopt for you.

 . ''Actually, what the author forgot to say was that it's actually using `getopts` semantics, rather than `getopt`. I ran this test:''
 {{{
 ~/process-getopt-1.6$ set -- one 'rm -rf /' 'foo;bar' "'"
 ~/process-getopt-1.6$ call_getopt "$@"
  -- 'rm -rf /' 'foo;bar' ''\'''
}}}
 . ''It appears to be intelligent enough to handle null options, whitespace-containing options, and single-quote-containing options in a manner that makes the [[BashFAQ/048|eval]] not blow up in your face. But this is not an endorsement of the process-getopt software overall; I don't know it well enough. -GreyCat ''

''It's written and tested on Linux where getopt(1) supports long options. For portability, it tests the local getopt(1) at runtime and if it finds an non-GNU one (ie one that does not return 4 for {{{getopt --test}}}) it only processes short options. It does not use the bash builtin getopts(1) command. -[[http://bhepple.freeshell.org/oddmuse/wiki.cgi/process-getopt|bhepple]] ''
For other, more complicated ways of option parsing, see ComplexOptionParsing.
Line 253: Line 142:

----
CategoryBashguide CategoryBashguide

How can I handle command-line arguments (options) to my script easily?

Well, that depends a great deal on what you want to do with them. There are several approaches, each with its strengths and weaknesses.

Manual loop

This approach handles any arbitrary set of options, because you're writing the parser yourself. For 90% of programs, this is the simplest approach (because you rarely need fancy stuff).

This example will handle a combination of short and long options. Notice how both "--file" and "--file=FILE" are handled.

   1 #!/bin/sh
   2 # (POSIX shell syntax)
   3 
   4 set -o nounset
   5 # Reset all variables that might be set
   6 file=
   7 verbose=0
   8 
   9 while [ "$#" -gt 0 ]; do
  10     case $1 in
  11         -h|-\?|--help)   # Call a "show_help" function to display a synopsis, then exit.
  12             show_help
  13             exit
  14             ;;
  15         -f|--file)       # Takes an option argument, ensuring it has been specified.
  16             if [ "$#" -gt 1 ]; then
  17                 file=$2
  18                 shift 2
  19                 continue
  20             else
  21                 echo 'ERROR: Must specify a non-empty "--file FILE" argument.' >&2
  22                 exit 1
  23             fi
  24             ;;
  25         --file=?*)
  26             file=${1#*=} # Delete everything up to "=" and assign the remainder.
  27             ;;
  28         --file=)         # Handle the case of an empty --file=
  29             echo 'ERROR: Must specify a non-empty "--file FILE" argument.' >&2
  30             exit 1
  31             ;;
  32         -v|--verbose)
  33             verbose=$((verbose + 1)) # Each -v argument adds 1 to verbosity.
  34             ;;
  35         --)              # End of all options.
  36             shift
  37             break
  38             ;;
  39         -?*)
  40             printf 'WARN: Unknown option (ignored): %s\n' "$1" >&2
  41             ;;
  42         *)               # Default case: If no more options then break out of the loop.
  43             break
  44     esac
  45 
  46     shift
  47 done
  48 
  49 # Suppose --file is a required option. Check that it has been set.
  50 if [ ! "$file" ]; then
  51     echo 'ERROR: option "--file FILE" not given. See --help.' >&2
  52     exit 1
  53 fi
  54 
  55 # Rest of the program here.
  56 # If there are input files (for example) that follow the options, they
  57 # will remain in the "$@" positional parameters.

This parser does not handle separate options concatenated together (like -xvf being understood as -x -v -f). This could be added with effort, but this is left as an exercise for the reader.

getopts

Unless it's the version from util-linux, and you use its advanced mode, never use getopt(1). Traditional versions of getopt cannot handle empty argument strings, or arguments with embedded whitespace.

The POSIX shell (and others) offer getopts which is safe to use instead. Here is a simplistic getopts example:

   1 #!/bin/sh
   2 
   3 # Usage info
   4 show_help() {
   5 cat << EOF
   6 Usage: ${0##*/} [-hv] [-f OUTFILE] [FILE]...
   7 Do stuff with FILE and write the result to standard output. With no FILE
   8 or when FILE is -, read standard input.
   9 
  10     -h          display this help and exit
  11     -f OUTFILE  write the result to OUTFILE instead of standard output.
  12     -v          verbose mode. Can be used multiple times for increased
  13                 verbosity.
  14 EOF
  15 }
  16 
  17 # Initialize our own variables:
  18 output_file=""
  19 verbose=0
  20 
  21 OPTIND=1 # Reset is necessary if getopts was used previously in the script.  It is a good idea to make this local in a function.
  22 while getopts "hvf:" opt; do
  23     case "$opt" in
  24         h)
  25             show_help
  26             exit 0
  27             ;;
  28         v)  verbose=$((verbose+1))
  29             ;;
  30         f)  output_file=$OPTARG
  31             ;;
  32         '?')
  33             show_help >&2
  34             exit 1
  35             ;;
  36     esac
  37 done
  38 shift "$((OPTIND-1))" # Shift off the options and optional --.
  39 
  40 printf 'verbose=<%d>\noutput_file=<%s>\nLeftovers:\n' "$verbose" "$output_file"
  41 printf '<%s>\n' "$@"
  42 
  43 # End of file

The advantages of getopts are:

  1. It's portable, and will work in any POSIX shell e.g. dash.
  2. It can handle things like -vf filename in the expected Unix way, automatically.

  3. It understands -- as the option terminator and more generally makes sure, options are parsed like for any standard command.

  4. With some implementations, the error messages will be localised in the language of the user.

The disadvantage of getopts is that (except for ksh93 getopts) it can only handle short options (-h, not --help) without trickery and cannot handle options with optional arguments à la GNU.

There is a getopts tutorial which explains what all of the syntax and variables mean. In bash, there is also help getopts, which might be informative.

There is also still the disadvantage that options are coded in at least 2, probably 3 places - in the call to getopts, in the case statement that processes them and presumably in the help message that you are going to get around to writing one of these days. This is a classic opportunity for errors to creep in as the code is written and maintained - often not discovered till much, much later. This can be avoided by using callback functions, but this approach kind of defeats the purpose of using getopts at all.

For other, more complicated ways of option parsing, see ComplexOptionParsing.


CategoryShell


CategoryBashguide CategoryBashguide

BashFAQ/035 (last edited 2024-02-26 07:51:38 by larryv)