11625
Comment: explain more, although I thought I had already explained. what do you mean, you don't understand how your own trick works?
|
5476
|
Deletions are marked like this. | Additions are marked like this. |
Line 3: | Line 3: |
Well, that depends a great deal on what you want to do with them. There are several approaches, each with its strengths and weaknesses. | Well, that depends a great deal on what you want to do with them. There are several approaches, each with its strengths and weaknesses. <<TableOfContents>> |
Line 6: | Line 8: |
This approach handles any arbitrary set of options, because you're writing the parser yourself. For 90% of programs, this turns out to be the simplest and most direct approach, since very few scripts need complicated option processing. | Manually parsing options without the use of a specialized function is the most flexible approach, and is sufficient for most simple scripts. |
Line 8: | Line 10: |
Here's an example that will handle a combination of short (`-h`) and long (`--help`) options. | This example will handle a combination of short (POSIX) and long "GNU style" options with option arguments. Notice how both `--file FILE` and `--file=FILE` are handled. Typical scripts may also use functions and local variables, which can greatly improve your code. This example however illustrates a strictly POSIX conforming script. |
Line 10: | Line 12: |
{{{ # Bash while [[ $1 == -* ]]; do case "$1" in -h|--help|-\?) show_help; exit 0;; -v|--verbose) verbose=1; shift;; -f) if (($# > 1)); then output_file=$2; shift 2 else echo "-f requires an argument" 1>&2 |
{{{#!highlight bash #!/bin/sh # POSIX # Reset all variables that might be set file= verbose=0 # Variables to be evaluated as shell arithmetic should be initialized to a default or validated beforehand. while :; do case $1 in -h|-\?|--help) # Call a "show_help" function to display a synopsis, then exit. show_help exit ;; -f|--file) # Takes an option argument, ensuring it has been specified. if [ -n "$2" ]; then file=$2 shift else printf 'ERROR: "--file" requires a non-empty option argument.\n' >&2 exit 1 fi ;; --file=?*) file=${1#*=} # Delete everything up to "=" and assign the remainder. ;; --file=) # Handle the case of an empty --file= printf 'ERROR: "--file" requires a non-empty option argument.\n' >&2 |
Line 21: | Line 41: |
fi ;; --) shift; break;; -*) echo "invalid option: $1" 1>&2; show_help; exit 1;; |
;; -v|--verbose) verbose=$((verbose + 1)) # Each -v argument adds 1 to verbosity. ;; --) # End of all options. shift break ;; -?*) printf 'WARN: Unknown option (ignored): %s\n' "$1" >&2 ;; *) # Default case: If no more options then break out of the loop. break esac shift done # if --file was provided, open it for writing, else duplicate stdout if [ -n "$file" ]; then exec 3> "$file" else exec 3>&1 fi # Rest of the program here. # If there are input files (for example) that follow the options, they # will remain in the "$@" positional parameters. }}} This parser does not handle separate options concatenated together (like `-xvf` being understood as `-x -v -f`). This could be added with effort, but this is left as an exercise for the reader. === getopts === Unless it's the version from util-linux, and you use its advanced mode, '''never use getopt(1).''' Traditional versions of `getopt` cannot handle empty argument strings, or arguments with embedded whitespace. The POSIX shell (and others) offer `getopts` which is safe to use instead. Here is a simplistic `getopts` example: {{{#!highlight bash #!/bin/sh # Usage info show_help() { cat << EOF Usage: ${0##*/} [-hv] [-f OUTFILE] [FILE]... Do stuff with FILE and write the result to standard output. With no FILE or when FILE is -, read standard input. -h display this help and exit -f OUTFILE write the result to OUTFILE instead of standard output. -v verbose mode. Can be used multiple times for increased verbosity. EOF } # Initialize our own variables: output_file="" verbose=0 OPTIND=1 # Resetting OPTIND is necessary if getopts was used previously in the script. # It is a good idea to make OPTIND local if you process options in a function. while getopts hvf: opt; do case $opt in h) show_help exit 0 ;; v) verbose=$((verbose+1)) ;; f) output_file=$OPTARG ;; *) show_help >&2 exit 1 ;; |
Line 26: | Line 118: |
shift "$((OPTIND-1))" # Shift off the options and optional --. # Everything that's left in "$@" is a non-option. In our case, a FILE to process. printf 'verbose=<%d>\noutput_file=<%s>\nLeftovers:\n' "$verbose" "$output_file" printf '<%s>\n' "$@" # End of file |
|
Line 27: | Line 126: |
Now all of the remaining arguments are the filenames which followed the optional switches. You can process those with `for i` or `"$@"`. A POSIX version of that same code: {{{ # POSIX while true; do case "$1" in -h|--help|-\?) show_help; exit 0;; -v|--verbose) verbose=1; shift;; -f) if [ $# -gt 1 ]; then output_file=$2; shift 2 else echo "-f requires an argument" 1>&2 exit 1 fi ;; --) shift; break;; -*) echo "invalid option: $1" 1>&2; show_help; exit 1;; *) break;; esac done }}} Some Bash programmers write this at the beginning of their scripts: {{{ set -u # or, set -o nounset }}} This way Bash stops if it's forced to work with the value of an unset variable. If you use `set -o nounset`, the Bash version of the "manual loop" shown above may break, if there are no additional non-option arguments. It can be fixed thus: {{{ # Bash (with set -u) while [[ ${1+defined} && $1 == -* ]]; do case "$1" in -h|--help|-\?) show_help; exit 0;; -v|--verbose) verbose=1; shift;; -f) if (($# > 1)); then output_file=$2; shift 2 else echo "-f requires an argument" 1>&2 exit 1 fi ;; --) shift; break;; -*) echo "invalid option: $1" 1>&2; show_help; exit 1;; esac done }}} Of course, a simpler fix would be ''not to use'' `set -u` in the first place; or at least to use it only after the option processing is finished. What these examples ''do not'' handle are: * You want things like `-xvf` to be handled as three separate flags (equivalent to `-x -v -f`). * You want to parse arguments out of `--file=bar`. It's certainly possible to do those things by changing the code, but at least in the first case, there's another approach that handles that automatically. === getopts === '''Never use getopt(1).''' `getopt` cannot handle empty arguments strings, or arguments with embedded whitespace. Please forget that it ever existed. The POSIX shell (and others) offer `getopts` which is safe to use instead. Here is a simplistic `getopts` example: {{{ # POSIX OPTIND=1 # Reset in case getopts has been used previously in the shell. while getopts "h?vf:" opt; do case "$opt" in h|\?) show_help; exit 0;; v) verbose=1;; f) output_file=$OPTARG;; esac done shift $((OPTIND-1)) if [ "$1" = -- ]; then shift; fi echo "verbose=$verbose, output_file='$output_file', Leftovers: $@" }}} The disadvantage of `getopts` is that it can only handle short options (`-h`) without trickery. It handles `-vf filename` in the expected Unix way, automatically. `getopts` is a good candidate because it is portable and e.g. also works in dash. |
|
Line 107: | Line 129: |
There is also still the disadvantage that options are coded in at least 2, probably 3 places - in the call to `getopts`, in the case statement that processes them and presumably in the help message that you are going to get around to writing one of these days. This is a classic opportunity for errors to creep in as the code is written and maintained - often not discovered till much, much later. This can be avoided by using callback functions, but this approach kind of defeats the purpose of using getopts at all. | The advantages of `getopts`: |
Line 109: | Line 131: |
Here is an example which claims to parse long options with `getopts`. The basic idea is quite simple: just put "-:" into the optstring. This trick requires a shell which permits the option-argument (i.e. the filename in "-f filename") to be concatenated to the option (as in "-ffilename"). The [[http://pubs.opengroup.org/onlinepubs/9699919799/utilities/getopts.html|POSIX standard]] says there must be a space between them; bash and dash permit the "-ffilename" variant, but one should not rely on this leniency if attempting to write a portable script. | 1. It's portable, and will work in any POSIX shell e.g. dash. 1. It can handle things like `-vf filename` in the expected Unix way, automatically. 1. It understands `--` as the option terminator and more generally makes sure, options are parsed like for any standard command. 1. With some implementations, the error messages will be localised in the language of the user. |
Line 111: | Line 136: |
''I do not quite understand the point, can you give an example? The example script below accepts --loglevel 5 and --loglevel=5. Support for the second form may be removed. Maybe the usage message is not quite correctly formatted? Anyway there is no concatenation necessary nor supported, neither does the script affect the treatment of short options in any way, does it?'' -- the author of the example | The disadvantages of `getopts`: 1. (Except for ksh93 `getopts`) it can only handle short options (`-h`, not `--help`) without trickery. 1. It cannot handle options with optional arguments à la GNU. 1. Options are coded in at least 2, probably 3 places -- in the call to `getopts`, in the case statement that processes them, and in the help/usage message that documents them. |
Line 113: | Line 141: |
''Your trick works by telling getopts that the option "-" should be accepted, and requires an additional argument. This is what "-:" means. If it were "f:" then getopts would handle the options "-f filename" and it would put the filename into OPTARG. Since it's "-:" we would expect getopts to handle "-- filename" in the same way, except that "--" is special and overrides that check. But! You found a trick: getopts '''in bash and dash''' allows "-ffilename" the same as "-f filename" and puts the filename into OPTARG in the former case as well as the latter. And it also interprets "-:" in such a way that it permits "--filename" to be parsed as "option - and argument filename", and puts the filename into OPTARG. In your example, the filename (option-argument) is "loglevel".'' ''The reason I am pointing this out is because relying on the shell to permit "-ffilename" or "--loglevel" in this way is non-portable. POSIX says that there should be a space between the -f and the filename. Your script violates that, and you just got lucky that bash and dash were kind enough to permit the violation and work around it. Without that violation, your trick cannot work at all. You are utterly relying on "--loglevel" to be permitted instead of "-- loglevel".'' -GreyCat {{{#!highlight bash #!/bin/bash # Uses bash extensions. Not portable as written. optspec=":h-:" while getopts "$optspec" optchar; do case "${optchar}" in -) case "${OPTARG}" in loglevel) val="${!OPTIND}"; OPTIND=$(( $OPTIND + 1 )) echo "Parsing option: '--${OPTARG}', value: '${val}'" >&2; ;; loglevel=*) val=${OPTARG#*=} opt=${OPTARG%=$val} echo "Parsing option: '--${opt}', value: '${val}'" >&2 ;; esac;; h) echo "usage: $0 [--loglevel[=]<value>]" >&2 exit 2 ;; esac done }}} ''Even if we ignore the portability issue, are you sure this is an ''improvement'' over the manual loop in the first example? The manual loop is much simpler. Also, why is it checking `OPTERR` which is something the programmer sets, not something set by `getopts`?'' - GreyCat ''Thre is nore than one way to do a thing :-) Since this is section is titled "getopts", I guess it fits here. Why not let people decide what suits their needs, without bias. The example works in the more stricly POSIX-compliant Debian Almquist shell (apart from the variable indirection ${!OPTIND}), so I guessed that portability would be ok. The OPTERR-conditional behavior was just non-essential sugar, I removed it for clarity of the example.'' -- the author of the example === Silly repeated brute-force scanning === Another approach is to check options with `if` statements "on demand". A function like this one may be useful: {{{ # Bash HaveOpt() { local needle=$1 shift while [[ $1 == -* ]]; do case "$1" in --) return 1;; # by convention, -- is end of options $needle) return 0;; esac shift done return 1 } if HaveOpt --quick "$@"; then echo "Option quick is set"; fi }}} and it will work if script is run as: * YES: ./script --quick * YES: ./script -other --quick but will stop on first argument with no "-" in front (or on --): * NO: ./script -bar foo --quick * NO: ./script -bar -- --quick Of course, this approach (iterating over the argument list every time you want to check for one) is far less efficient than just iterating once and setting flag variables. It also spreads the options throughout the program. The literal option `--quick` may appear a hundred lines down inside the main body of the program, nowhere near any other option name. This is a nightmare for maintenance. === Complex nonstandard add-on utilities === [[http://bhepple.freeshell.org/oddmuse/wiki.cgi/process-getopt|bhepple]] suggests the use of [[http://sourceforge.net/projects/process-getopt/|process-getopt]] (GPL licensed) and offers this example code: {{{ PROG=$(basename $0) VERSION='1.2' USAGE="A tiny example using process-getopt(1)" # call process-getopt functions to define some options: source process-getopt SLOT="" SLOT_func() { [ "${1:-""}" ] && SLOT="yes"; } # callback for SLOT option add_opt SLOT "boolean option" s "" slot TOKEN="" TOKEN_func() { [ "${1:-""}" ] && TOKEN="$2"; } # callback for TOKEN option add_opt TOKEN "this option takes a value" t n token number add_std_opts # define the standard options --help etc: TEMP=$(call_getopt "$@") || exit 1 eval set -- "$TEMP" # just as with getopt(1) # remove the options from the command line process_opts "$@" || shift "$?" echo "SLOT=$SLOT" echo "TOKEN=$TOKEN" echo "args=$@" }}} Here, all information about each option is defined in one place making for much easier authoring and maintenance. A lot of the dirty work is handled automatically and standards are obeyed as in getopt(1) - because it calls getopt for you. . ''Actually, what the author forgot to say was that it's actually using `getopts` semantics, rather than `getopt`. I ran this test:'' {{{ wooledg@wooledg:~/process-getopt-1.6$ set -- one 'rm -rf /' 'foo;bar' "'" wooledg@wooledg:~/process-getopt-1.6$ call_getopt "$@" -- 'rm -rf /' 'foo;bar' ''\''' }}} . ''It appears to be intelligent enough to handle null options, whitespace-containing options, and single-quote-containing options in a manner that makes the [[BashFAQ/048|eval]] not blow up in your face. But this is not an endorsement of the process-getopt software overall; I don't know it well enough. -GreyCat It's written and tested on Linux where getopt(1) supports long options. For portability, it tests the local getopt(1) at runtime and if it finds an non-GNU one (ie one that does not return 4 for {{{getopt --test}}}) it only processes short options. It does not use the bash builtin getopts(1) command. -[[http://bhepple.freeshell.org/oddmuse/wiki.cgi/process-getopt|bhepple]] |
For other, more complicated ways of option parsing, see ComplexOptionParsing. |
How can I handle command-line arguments (options) to my script easily?
Well, that depends a great deal on what you want to do with them. There are several approaches, each with its strengths and weaknesses.
Manual loop
Manually parsing options without the use of a specialized function is the most flexible approach, and is sufficient for most simple scripts.
This example will handle a combination of short (POSIX) and long "GNU style" options with option arguments. Notice how both --file FILE and --file=FILE are handled. Typical scripts may also use functions and local variables, which can greatly improve your code. This example however illustrates a strictly POSIX conforming script.
1 #!/bin/sh
2 # POSIX
3
4 # Reset all variables that might be set
5 file=
6 verbose=0 # Variables to be evaluated as shell arithmetic should be initialized to a default or validated beforehand.
7
8 while :; do
9 case $1 in
10 -h|-\?|--help) # Call a "show_help" function to display a synopsis, then exit.
11 show_help
12 exit
13 ;;
14 -f|--file) # Takes an option argument, ensuring it has been specified.
15 if [ -n "$2" ]; then
16 file=$2
17 shift
18 else
19 printf 'ERROR: "--file" requires a non-empty option argument.\n' >&2
20 exit 1
21 fi
22 ;;
23 --file=?*)
24 file=${1#*=} # Delete everything up to "=" and assign the remainder.
25 ;;
26 --file=) # Handle the case of an empty --file=
27 printf 'ERROR: "--file" requires a non-empty option argument.\n' >&2
28 exit 1
29 ;;
30 -v|--verbose)
31 verbose=$((verbose + 1)) # Each -v argument adds 1 to verbosity.
32 ;;
33 --) # End of all options.
34 shift
35 break
36 ;;
37 -?*)
38 printf 'WARN: Unknown option (ignored): %s\n' "$1" >&2
39 ;;
40 *) # Default case: If no more options then break out of the loop.
41 break
42 esac
43
44 shift
45 done
46
47 # if --file was provided, open it for writing, else duplicate stdout
48 if [ -n "$file" ]; then
49 exec 3> "$file"
50 else
51 exec 3>&1
52 fi
53
54 # Rest of the program here.
55 # If there are input files (for example) that follow the options, they
56 # will remain in the "$@" positional parameters.
This parser does not handle separate options concatenated together (like -xvf being understood as -x -v -f). This could be added with effort, but this is left as an exercise for the reader.
getopts
Unless it's the version from util-linux, and you use its advanced mode, never use getopt(1). Traditional versions of getopt cannot handle empty argument strings, or arguments with embedded whitespace.
The POSIX shell (and others) offer getopts which is safe to use instead. Here is a simplistic getopts example:
1 #!/bin/sh
2
3 # Usage info
4 show_help() {
5 cat << EOF
6 Usage: ${0##*/} [-hv] [-f OUTFILE] [FILE]...
7 Do stuff with FILE and write the result to standard output. With no FILE
8 or when FILE is -, read standard input.
9
10 -h display this help and exit
11 -f OUTFILE write the result to OUTFILE instead of standard output.
12 -v verbose mode. Can be used multiple times for increased
13 verbosity.
14 EOF
15 }
16
17 # Initialize our own variables:
18 output_file=""
19 verbose=0
20
21 OPTIND=1
22 # Resetting OPTIND is necessary if getopts was used previously in the script.
23 # It is a good idea to make OPTIND local if you process options in a function.
24
25 while getopts hvf: opt; do
26 case $opt in
27 h)
28 show_help
29 exit 0
30 ;;
31 v) verbose=$((verbose+1))
32 ;;
33 f) output_file=$OPTARG
34 ;;
35 *)
36 show_help >&2
37 exit 1
38 ;;
39 esac
40 done
41 shift "$((OPTIND-1))" # Shift off the options and optional --.
42
43 # Everything that's left in "$@" is a non-option. In our case, a FILE to process.
44 printf 'verbose=<%d>\noutput_file=<%s>\nLeftovers:\n' "$verbose" "$output_file"
45 printf '<%s>\n' "$@"
46
47 # End of file
There is a getopts tutorial which explains what all of the syntax and variables mean. In bash, there is also help getopts, which might be informative.
The advantages of getopts:
- It's portable, and will work in any POSIX shell e.g. dash.
It can handle things like -vf filename in the expected Unix way, automatically.
It understands -- as the option terminator and more generally makes sure, options are parsed like for any standard command.
- With some implementations, the error messages will be localised in the language of the user.
The disadvantages of getopts:
(Except for ksh93 getopts) it can only handle short options (-h, not --help) without trickery.
- It cannot handle options with optional arguments à la GNU.
Options are coded in at least 2, probably 3 places -- in the call to getopts, in the case statement that processes them, and in the help/usage message that documents them.
For other, more complicated ways of option parsing, see ComplexOptionParsing.