6912
Comment: Added "1>&2" to an error message
|
8324
There's no getopts implementation where `-:` works to allow long options.
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
#pragma section-numbers 3 | |
Line 3: | Line 4: |
Well, that depends a great deal on what you want to do with them. There are several approaches, each with its strengths and weaknesses. | Well, that depends a great deal on what you want to do with them. There are several approaches, each with its strengths and weaknesses. <<TableOfContents>> |
Line 6: | Line 9: |
This approach handles any arbitrary set of options, because you're writing the parser yourself. For 90% of programs, this turns out to be the simplest and most direct approach, since very few scripts need complicated option processing. Here's an example that will handle a combination of short (`-h`) and long (`--help`) options. {{{ # Bash while [[ $1 == -* ]]; do case "$1" in -h|--help|-\?) show_help; exit 0;; -v|--verbose) verbose=1; shift;; -f) if (($# > 1)); then output_file=$2; shift 2 else printf "%s\n" "-f requires an argument" exit 1 fi ;; --) shift; break;; -*) echo "invalid option: $1" 1>&2; show_help; exit 1;; |
This approach handles any arbitrary set of options, because you're writing the parser yourself. For 90% of programs, this is the simplest approach (because you rarely need fancy stuff). This example will handle a combination of short and long options. Notice how both "--file" and "--file=FILE" are handled. {{{#!highlight bash #!/bin/sh # (POSIX shell syntax) # Reset all variables that might be set file="" verbose=0 while : do case $1 in -h | --help | -\?) # Call your Help() or usage() function here. exit 0 # This is not an error, User asked help. Don't do "exit 1" ;; -f | --file) file=$2 # You might want to check if you really got FILE shift 2 ;; --file=*) file=${1#*=} # Delete everything up till "=" shift ;; -v | --verbose) # Each instance of -v adds 1 to verbosity verbose=$((verbose+1)) shift ;; --) # End of all options shift break ;; -*) echo "WARN: Unknown option (ignored): $1" >&2 shift ;; *) # no more options. Stop while loop break ;; |
Line 26: | Line 54: |
}}} Now all of the remaining arguments are the filenames which followed the optional switches. You can process those with `for i` or `"$@"`. A POSIX version of that same code: |
# Suppose some options are required. Check that we got them. if [ ! "$file" ]; then echo "ERROR: option '--file FILE' not given. See --help" >&2 exit 1 fi # Rest of the program here. # If there are input files (for example) that follow the options, they # will remain in the "$@" positional parameters. }}} This parser does not handle separate options concatenated together (like `-xvf` being understood as `-x -v -f`). This could be added with effort, but this is left as an exercise for the reader. Some Bash programmers like to write this at the beginning of their scripts to guard against unused variables: |
Line 31: | Line 71: |
# POSIX while true; do case "$1" in -h|--help|-\?) show_help; exit 0;; -v|--verbose) verbose=1; shift;; -f) if [ $# -gt 1 ]; then output_file=$2; shift 2 else printf "%s\n" "-f requires an argument" exit 1 fi ;; --) shift; break;; -*) echo "invalid option: $1"; show_help; exit 1;; *) break;; |
set -u # or, set -o nounset }}} The use of this breaks the loop above, as "$1" may not be set upon entering the loop. There are four solutions to this issue: 1. Stop using `-u`. 1. Replace `case $1 in` with `case ${1+$1} in` (as well as bandaging all the other code that `set -u` breaks). 1. Replace `case $1 in` with `case ${1-} in` (every potentially undeclared variable could be written as ${variable-} to prevent `set -u` tripping). 1. Stop using `-u`. === getopts === Unless it's the version from util-linux, and use its advanced mode, '''never use getopt(1).''' Traditional versions of `getopt` cannot handle empty arguments strings, or arguments with embedded whitespace. The POSIX shell (and others) offer `getopts` which is safe to use instead. Here is a simplistic `getopts` example: {{{#!highlight bash #!/bin/sh # Initialize our own variables: output_file="" verbose=0 OPTIND=1 # Reset is necessary if getopts was used previously in the script. It is a good idea to make this local in a function. while getopts "hvf:" opt; do case "$opt" in h) show_help exit 0 ;; v) verbose=1 ;; f) output_file=$OPTARG ;; |
Line 47: | Line 105: |
}}} What this example ''does not'' handle are: * You want things like `-xvf` to be handled as three separate flags (equivalent to `-x -v -f`). * You want to parse arguments out of `--file=bar`. It's certainly possible to do those things by changing the code, but at least in the first case, there's another approach that handles that automatically. === getopts === '''Never use getopt(1).''' `getopt` cannot handle empty arguments strings, or arguments with embedded whitespace. Please forget that it ever existed. The POSIX shell (and others) offer `getopts` which is safe to use instead. Here is a simplistic `getopts` example: {{{ # POSIX x=1 # Avoids an error if we get no options at all. while getopts "h?vf:" opt; do case "$opt" in h|\?) show_help; exit 0;; v) verbose=1;; f) output_file=$OPTARG;; esac x=$OPTIND done shift $(($x-1)) if [ "$1" = -- ]; then shift; fi |
shift $((OPTIND-1)) # Shift off the options and optional --. |
Line 75: | Line 108: |
}}} The disadvantage of `getopts` is that it can only handle short options (`-h`), not long options. But it handles `-vf filename` in the expected Unix way, automatically. So, if one wishes to sacrifice `--help` to get `-vf filename`, then `getops` is a good candidate. There is a [[http://bash-hackers.org/wiki/doku.php/howto/getopts_tutorial|getopts tutorial]] which explains what all of the syntax and variables mean. In bash, there is also `help getopts`, which might be informative. There is also still the disadvantage that options are coded in at least 2, probably 3 places - in the call to `getopts`, in the case statement that processes them and presumably in the help message that you are going to get around to writing one of these days. This is a classic opportunity for errors to creep in as the code is written and maintained - often not discovered till much, much later. |
# End of file }}} The advantages of `getopts` are: 1. It's portable, and will work in e.g. dash. 1. It can handle things like `-vf filename` in the expected Unix way, automatically. The disadvantage of `getopts` is that (except on `ksh93`), it can only handle short options (`-h`, not `--help`) without trickery. There is a [[http://wiki.bash-hackers.org/howto/getopts_tutorial|getopts tutorial]] which explains what all of the syntax and variables mean. In bash, there is also `help getopts`, which might be informative. There is also still the disadvantage that options are coded in at least 2, probably 3 places - in the call to `getopts`, in the case statement that processes them and presumably in the help message that you are going to get around to writing one of these days. This is a classic opportunity for errors to creep in as the code is written and maintained - often not discovered till much, much later. This can be avoided by using callback functions, but this approach kind of defeats the purpose of using getopts at all. `?`, `:`, and `-` are the 3 characters that are not allowed as option names by `getopts`. |
Line 84: | Line 125: |
Line 87: | Line 127: |
{{{ # Bash HaveOpt() { local needle=$1 shift while [[ $1 == -* ]]; do case "$1" in --) return 1;; # by convention, -- is end of options $needle) return 0;; esac |
{{{#!highlight bash #!/bin/bash HaveOpt () { local needle=$1 |
Line 98: | Line 134: |
done return 1 |
while [[ $1 == -* ]] do # By convention, "--" means end of options. case "$1" in --) return 1 ;; $needle) return 0 ;; esac shift done return 1 |
Line 101: | Line 148: |
if HaveOpt --quick "$@"; then echo "Option quick is set"; fi }}} |
HaveOpt --quick "$@" && echo "Option quick is set" # End of file }}} |
Line 116: | Line 165: |
It also spreads the options throughout the program. The literal option `--quick` may appear a hundred lines down inside the main body of the program, nowhere near any other option name. This is a nightmare for maintenance. | It also spreads the options throughout the program. The literal option `--quick` may appear a hundred lines down inside the main body of the program, nowhere near any other option name. This is a nightmare for maintenance. |
Line 119: | Line 168: |
Line 151: | Line 199: |
Line 153: | Line 202: |
wooledg@wooledg:~/process-getopt-1.6$ set -- one 'rm -rf /' 'foo;bar' "'" wooledg@wooledg:~/process-getopt-1.6$ call_getopt "$@" |
~/process-getopt-1.6$ set -- one 'rm -rf /' 'foo;bar' "'" ~/process-getopt-1.6$ call_getopt "$@" |
Line 156: | Line 205: |
}}} . ''It appears to be intelligent enough to handle null options, whitespace-containing options, and single-quote-containing options in a manner that makes the [[BashFAQ/048|eval]] not blow up in your face. But this is not an endorsement of the process-getopt software overall; I don't know it well enough. -GreyCat It's written and tested on Linux where getopt(1) supports long options. For portability, it tests the local getopt(1) at runtime and if it finds an non-GNU one (ie one that does not return 4 for {{{getopt --test}}}) it only processes short options. It does not use the bash builtin getopts(1) command. -[[http://bhepple.freeshell.org/oddmuse/wiki.cgi/process-getopt|bhepple]] |
}}} . ''It appears to be intelligent enough to handle null options, whitespace-containing options, and single-quote-containing options in a manner that makes the [[BashFAQ/048|eval]] not blow up in your face. But this is not an endorsement of the process-getopt software overall; I don't know it well enough. -GreyCat '' ''It's written and tested on Linux where getopt(1) supports long options. For portability, it tests the local getopt(1) at runtime and if it finds an non-GNU one (ie one that does not return 4 for {{{getopt --test}}}) it only processes short options. It does not use the bash builtin getopts(1) command. -[[http://bhepple.freeshell.org/oddmuse/wiki.cgi/process-getopt|bhepple]] '' |
Line 162: | Line 211: |
CategoryShell | '' CategoryShell '' |
How can I handle command-line arguments (options) to my script easily?
Well, that depends a great deal on what you want to do with them. There are several approaches, each with its strengths and weaknesses.
Contents
Manual loop
This approach handles any arbitrary set of options, because you're writing the parser yourself. For 90% of programs, this is the simplest approach (because you rarely need fancy stuff).
This example will handle a combination of short and long options. Notice how both "--file" and "--file=FILE" are handled.
1 #!/bin/sh
2 # (POSIX shell syntax)
3
4 # Reset all variables that might be set
5 file=""
6 verbose=0
7
8 while :
9 do
10 case $1 in
11 -h | --help | -\?)
12 # Call your Help() or usage() function here.
13 exit 0 # This is not an error, User asked help. Don't do "exit 1"
14 ;;
15 -f | --file)
16 file=$2 # You might want to check if you really got FILE
17 shift 2
18 ;;
19 --file=*)
20 file=${1#*=} # Delete everything up till "="
21 shift
22 ;;
23 -v | --verbose)
24 # Each instance of -v adds 1 to verbosity
25 verbose=$((verbose+1))
26 shift
27 ;;
28 --) # End of all options
29 shift
30 break
31 ;;
32 -*)
33 echo "WARN: Unknown option (ignored): $1" >&2
34 shift
35 ;;
36 *) # no more options. Stop while loop
37 break
38 ;;
39 esac
40 done
41
42 # Suppose some options are required. Check that we got them.
43
44 if [ ! "$file" ]; then
45 echo "ERROR: option '--file FILE' not given. See --help" >&2
46 exit 1
47 fi
48
49 # Rest of the program here.
50 # If there are input files (for example) that follow the options, they
51 # will remain in the "$@" positional parameters.
This parser does not handle separate options concatenated together (like -xvf being understood as -x -v -f). This could be added with effort, but this is left as an exercise for the reader.
Some Bash programmers like to write this at the beginning of their scripts to guard against unused variables:
set -u # or, set -o nounset
The use of this breaks the loop above, as "$1" may not be set upon entering the loop. There are four solutions to this issue:
Stop using -u.
Replace case $1 in with case ${1+$1} in (as well as bandaging all the other code that set -u breaks).
Replace case $1 in with case ${1-} in (every potentially undeclared variable could be written as ${variable-} to prevent set -u tripping).
Stop using -u.
getopts
Unless it's the version from util-linux, and use its advanced mode, never use getopt(1). Traditional versions of getopt cannot handle empty arguments strings, or arguments with embedded whitespace.
The POSIX shell (and others) offer getopts which is safe to use instead. Here is a simplistic getopts example:
1 #!/bin/sh
2
3 # Initialize our own variables:
4 output_file=""
5 verbose=0
6
7 OPTIND=1 # Reset is necessary if getopts was used previously in the script. It is a good idea to make this local in a function.
8 while getopts "hvf:" opt; do
9 case "$opt" in
10 h)
11 show_help
12 exit 0
13 ;;
14 v) verbose=1
15 ;;
16 f) output_file=$OPTARG
17 ;;
18 esac
19 done
20 shift $((OPTIND-1)) # Shift off the options and optional --.
21
22 echo "verbose=$verbose, output_file='$output_file', Leftovers: $@"
23
24 # End of file
The advantages of getopts are:
- It's portable, and will work in e.g. dash.
It can handle things like -vf filename in the expected Unix way, automatically.
The disadvantage of getopts is that (except on ksh93), it can only handle short options (-h, not --help) without trickery.
There is a getopts tutorial which explains what all of the syntax and variables mean. In bash, there is also help getopts, which might be informative.
There is also still the disadvantage that options are coded in at least 2, probably 3 places - in the call to getopts, in the case statement that processes them and presumably in the help message that you are going to get around to writing one of these days. This is a classic opportunity for errors to creep in as the code is written and maintained - often not discovered till much, much later. This can be avoided by using callback functions, but this approach kind of defeats the purpose of using getopts at all.
?, :, and - are the 3 characters that are not allowed as option names by getopts.
Silly repeated brute-force scanning
Another approach is to check options with if statements "on demand". A function like this one may be useful:
1 #!/bin/bash
2
3 HaveOpt ()
4 {
5 local needle=$1
6 shift
7
8 while [[ $1 == -* ]]
9 do
10 # By convention, "--" means end of options.
11 case "$1" in
12 --) return 1 ;;
13 $needle) return 0 ;;
14 esac
15
16 shift
17 done
18
19 return 1
20 }
21
22 HaveOpt --quick "$@" && echo "Option quick is set"
23
24 # End of file
and it will work if script is run as:
- YES: ./script --quick
- YES: ./script -other --quick
but will stop on first argument with no "-" in front (or on --):
- NO: ./script -bar foo --quick
- NO: ./script -bar -- --quick
Of course, this approach (iterating over the argument list every time you want to check for one) is far less efficient than just iterating once and setting flag variables.
It also spreads the options throughout the program. The literal option --quick may appear a hundred lines down inside the main body of the program, nowhere near any other option name. This is a nightmare for maintenance.
Complex nonstandard add-on utilities
bhepple suggests the use of process-getopt (GPL licensed) and offers this example code:
PROG=$(basename $0) VERSION='1.2' USAGE="A tiny example using process-getopt(1)" # call process-getopt functions to define some options: source process-getopt SLOT="" SLOT_func() { [ "${1:-""}" ] && SLOT="yes"; } # callback for SLOT option add_opt SLOT "boolean option" s "" slot TOKEN="" TOKEN_func() { [ "${1:-""}" ] && TOKEN="$2"; } # callback for TOKEN option add_opt TOKEN "this option takes a value" t n token number add_std_opts # define the standard options --help etc: TEMP=$(call_getopt "$@") || exit 1 eval set -- "$TEMP" # just as with getopt(1) # remove the options from the command line process_opts "$@" || shift "$?" echo "SLOT=$SLOT" echo "TOKEN=$TOKEN" echo "args=$@"
Here, all information about each option is defined in one place making for much easier authoring and maintenance. A lot of the dirty work is handled automatically and standards are obeyed as in getopt(1) - because it calls getopt for you.
Actually, what the author forgot to say was that it's actually using getopts semantics, rather than getopt. I ran this test:
~/process-getopt-1.6$ set -- one 'rm -rf /' 'foo;bar' "'" ~/process-getopt-1.6$ call_getopt "$@" -- 'rm -rf /' 'foo;bar' ''\'''
It appears to be intelligent enough to handle null options, whitespace-containing options, and single-quote-containing options in a manner that makes the eval not blow up in your face. But this is not an endorsement of the process-getopt software overall; I don't know it well enough. -GreyCat
It's written and tested on Linux where getopt(1) supports long options. For portability, it tests the local getopt(1) at runtime and if it finds an non-GNU one (ie one that does not return 4 for getopt --test) it only processes short options. It does not use the bash builtin getopts(1) command. -bhepple