Differences between revisions 2 and 26 (spanning 24 versions)
Revision 2 as of 2008-03-02 00:16:06
Size: 1863
Editor: brt48
Comment: by limcore.com woot?
Revision 26 as of 2010-06-11 20:15:49
Size: 7764
Editor: geirha
Comment: Reset OPTIND before using getopts
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
[[Anchor(faq35)]]
== How can I handle command-line arguments to my script easily? ==
Well, that depends a great deal on what you want to do with them. Here's a general template that might help for the simple cases:
<<Anchor(faq35)>>
== How can I handle command-line arguments (options) to my script easily? ==
Well, that depends a great deal on what you want to do with them. There are several approaches, each with its strengths and weaknesses.

=== Manual loop ===
This approach handles any arbitrary set of options, because you're writing the parser yourself. For 90% of programs, this turns out to be the simplest and most direct approach, since very few scripts need complicated option processing.

Here's an example that will handle a combination of short (`-h`) and long (`--help`) options.
Line 6: Line 11:
    while [[ $1 == -* ]]; do
        case "$1" in
          -h|--help) show_help; exit 0;;
          -v) verbose=1; shift;;
          -f) output_file=$2; shift 2;;
        esac
    done
    # Now all of the remaining arguments are the filenames which followed
    # the optional switches. You can process those with "for i" or "$@".
# Bash
while [[ $1 == -* ]]; do
    case "$1" in
      -h|--help|-\?) show_help; exit 0;;
      -v|--verbose) verbose=1; shift;;
      -f) if (($# > 1)); then
            output_file=$2; shift 2
          else
            echo "-f requires an argument" 1>&2
            exit 1
          fi ;;
      --) shift; break;;
      -*) echo "invalid option: $1" 1>&2; show_help; exit 1;;
    esac
done
}}}
Now all of the remaining arguments are the filenames which followed the optional switches. You can process those with `for i` or `"$@"`.

A POSIX version of that same code:
{{{
# POSIX
while true; do
    case "$1" in
      -h|--help|-\?) show_help; exit 0;;
      -v|--verbose) verbose=1; shift;;
      -f) if [ $# -gt 1 ]; then
            output_file=$2; shift 2
          else
            echo "-f requires an argument" 1>&2
            exit 1
          fi ;;
      --) shift; break;;
      -*) echo "invalid option: $1" 1>&2; show_help; exit 1;;
      *) break;;
    esac
done
Line 17: Line 49:
For more complex/generalized cases, or if you want things like "-xvf" to be handled as three separate flags, you can use getopts. ('''NEVER use getopt(1)!''')

Here is a simplistic getopts example:
Some Bash programmers write this at the beginning of their scripts:
{{{
    set -u
    # or, set -o nounset
}}}
This way Bash stops if it's forced to work with the value of an unset variable. If you use `set -o nounset`, the Bash version of the "manual loop" shown above may break, if there are no additional non-option arguments. It can be fixed thus:
Line 22: Line 57:
    x=1 # Avoids an error if we get no options at all.
    while getopts "abcf:g:h:" opt; do
      case "$opt" in
        a) echo "You said a";;
        b) echo "You said b";;
        c) echo "You said c";;
        f) echo "You said f, with argument $OPTARG";;
        g) echo "You said g, with argument $OPTARG";;
        h) echo "You said h, with argument $OPTARG";;
      esac
      x=$OPTIND
    done
    shift $((x-1))
    echo "Left overs: $@"
# Bash (with set -u)
while [[ $1 == -* ]]; do
    case "$1" in
      -h|--help|-\?) show_help; exit 0;;
      -v|--verbose) verbose=1; shift;;
      -f) if (($# > 1)); then
            output_file=$2; shift 2
          else
            echo "-f requires an argument" 1>&2
            exit 1
          fi ;;
      --) shift; break;;
      -*) echo "invalid option: $1" 1>&2; show_help; exit 1;;
    esac
    if ! test "${1+defined}"; then
        break
    fi
done
Line 38: Line 77:
What these examples ''do not'' handle are:
 * You want things like `-xvf` to be handled as three separate flags (equivalent to `-x -v -f`).
 * You want to parse arguments out of `--file=bar`.
Line 39: Line 81:
If your prefer to check options with IFs quickly then: It's certainly possible to do those things by changing the code, but at least in the first case, there's another approach that handles that automatically.

=== getopts ===

'''Never use getopt(1).''' `getopt` cannot handle empty arguments strings, or arguments with embedded whitespace. Please forget that it ever existed.

The POSIX shell (and others) offer `getopts` which is safe to use instead. Here is a simplistic `getopts` example:
Line 42: Line 90:
# POSIX
OPTIND=1 # Reset if getopts has been used previously in the shell.
while getopts "h?vf:" opt; do
  case "$opt" in
    h|\?) show_help; exit 0;;
    v) verbose=1;;
    f) output_file=$OPTARG;;
  esac
done
shift $((OPTIND-1))
if [ "$1" = -- ]; then shift; fi
echo "verbose=$verbose, output_file='$output_file', Leftovers: $@"
}}}
Line 43: Line 104:
function HaveOpt {
  needle=$1
The disadvantage of `getopts` is that it can only handle short options (`-h`), not long options. But it handles `-vf filename` in the expected Unix way, automatically. So, if one wishes to sacrifice `--help` to get `-vf filename`, then `getops` is a good candidate.

There is a [[http://wiki.bash-hackers.org/howto/getopts_tutorial|getopts tutorial]] which explains what all of the syntax and variables mean. In bash, there is also `help getopts`, which might be informative.

There is also still the disadvantage that options are coded in at least 2, probably 3 places - in the call to `getopts`, in the case statement that processes them and presumably in the help message that you are going to get around to writing one of these days. This is a classic opportunity for errors to creep in as the code is written and maintained - often not discovered till much, much later.

=== Silly repeated brute-force scanning ===

Another approach is to check options with `if` statements "on demand". A function like this one may be useful:

{{{
# Bash
HaveOpt() {
  local needle=$1
Line 48: Line 121:
      --) return 1; # stop now, since -- by convention is end of option arguments       --) return 1;; # by convention, -- is end of options
Line 53: Line 126:
  return 1;   return 1
Line 55: Line 128:

May be useful.
Use
if like:
HaveOpt --quick $* && echo "Option quick is set"
if HaveOpt --quick "$@"; then echo "Option quick is set"; fi
}}}
Line 61: Line 132:
YES: ./script --quick
YES: ./script -other --quick
but will stop on first no minus argument (or --)
NO: ./script -bar foo --quick
NO: ./script -bar -- --quick
Line 67: Line 133:
 * YES: ./script --quick
 * YES: ./script -other --quick

but will stop on first argument with no "-" in front (or on --):

 * NO: ./script -bar foo --quick
 * NO: ./script -bar -- --quick

Of course, this approach (iterating over the argument list every time you want to check for one) is far less efficient than just iterating once and setting flag variables.

It also spreads the options throughout the program. The literal option `--quick` may appear a hundred lines down inside the main body of the program, nowhere near any other option name. This is a nightmare for maintenance.

=== Complex nonstandard add-on utilities ===

[[http://bhepple.freeshell.org/oddmuse/wiki.cgi/process-getopt|bhepple]] suggests the use of [[http://sourceforge.net/projects/process-getopt/|process-getopt]] (GPL licensed) and offers this example code:

{{{
PROG=$(basename $0)
VERSION='1.2'
USAGE="A tiny example using process-getopt(1)"

# call process-getopt functions to define some options:
source process-getopt

SLOT=""
SLOT_func() { [ "${1:-""}" ] && SLOT="yes"; } # callback for SLOT option
add_opt SLOT "boolean option" s "" slot

TOKEN=""
TOKEN_func() { [ "${1:-""}" ] && TOKEN="$2"; } # callback for TOKEN option
add_opt TOKEN "this option takes a value" t n token number

add_std_opts # define the standard options --help etc:

TEMP=$(call_getopt "$@") || exit 1
eval set -- "$TEMP" # just as with getopt(1)

# remove the options from the command line
process_opts "$@" || shift "$?"

echo "SLOT=$SLOT"
echo "TOKEN=$TOKEN"
echo "args=$@"
Line 68: Line 177:
Here, all information about each option is defined in one place making for much easier authoring and maintenance. A lot of the dirty work is handled automatically and standards are obeyed as in getopt(1) - because it calls getopt for you.
 . ''Actually, what the author forgot to say was that it's actually using `getopts` semantics, rather than `getopt`. I ran this test:''
 {{{
 wooledg@wooledg:~/process-getopt-1.6$ set -- one 'rm -rf /' 'foo;bar' "'"
 wooledg@wooledg:~/process-getopt-1.6$ call_getopt "$@"
  -- 'rm -rf /' 'foo;bar' ''\'''
 }}}
 . ''It appears to be intelligent enough to handle null options, whitespace-containing options, and single-quote-containing options in a manner that makes the [[BashFAQ/048|eval]] not blow up in your face. But this is not an endorsement of the process-getopt software overall; I don't know it well enough. -GreyCat

It's written and tested on Linux where getopt(1) supports long options. For portability, it tests the local getopt(1) at runtime and if it finds an non-GNU one (ie one that does not return 4 for {{{getopt --test}}}) it only processes short options. It does not use the bash builtin getopts(1) command. -[[http://bhepple.freeshell.org/oddmuse/wiki.cgi/process-getopt|bhepple]]

----
CategoryShell

How can I handle command-line arguments (options) to my script easily?

Well, that depends a great deal on what you want to do with them. There are several approaches, each with its strengths and weaknesses.

Manual loop

This approach handles any arbitrary set of options, because you're writing the parser yourself. For 90% of programs, this turns out to be the simplest and most direct approach, since very few scripts need complicated option processing.

Here's an example that will handle a combination of short (-h) and long (--help) options.

# Bash
while [[ $1 == -* ]]; do
    case "$1" in
      -h|--help|-\?) show_help; exit 0;;
      -v|--verbose) verbose=1; shift;;
      -f) if (($# > 1)); then
            output_file=$2; shift 2
          else 
            echo "-f requires an argument" 1>&2
            exit 1
          fi ;;
      --) shift; break;;
      -*) echo "invalid option: $1" 1>&2; show_help; exit 1;;
    esac
done

Now all of the remaining arguments are the filenames which followed the optional switches. You can process those with for i or "$@".

A POSIX version of that same code:

# POSIX
while true; do
    case "$1" in
      -h|--help|-\?) show_help; exit 0;;
      -v|--verbose) verbose=1; shift;;
      -f) if [ $# -gt 1 ]; then
            output_file=$2; shift 2
          else 
            echo "-f requires an argument" 1>&2
            exit 1
          fi ;;
      --) shift; break;;
      -*) echo "invalid option: $1" 1>&2; show_help; exit 1;;
      *)  break;;
    esac
done

Some Bash programmers write this at the beginning of their scripts:

    set -u
    # or, set -o nounset

This way Bash stops if it's forced to work with the value of an unset variable. If you use set -o nounset, the Bash version of the "manual loop" shown above may break, if there are no additional non-option arguments. It can be fixed thus:

# Bash (with set -u)
while [[ $1 == -* ]]; do
    case "$1" in
      -h|--help|-\?) show_help; exit 0;;
      -v|--verbose) verbose=1; shift;;
      -f) if (($# > 1)); then
            output_file=$2; shift 2
          else 
            echo "-f requires an argument" 1>&2
            exit 1
          fi ;;
      --) shift; break;;
      -*) echo "invalid option: $1" 1>&2; show_help; exit 1;;
    esac
    if ! test "${1+defined}"; then
        break
    fi
done

What these examples do not handle are:

  • You want things like -xvf to be handled as three separate flags (equivalent to -x -v -f).

  • You want to parse arguments out of --file=bar.

It's certainly possible to do those things by changing the code, but at least in the first case, there's another approach that handles that automatically.

getopts

Never use getopt(1). getopt cannot handle empty arguments strings, or arguments with embedded whitespace. Please forget that it ever existed.

The POSIX shell (and others) offer getopts which is safe to use instead. Here is a simplistic getopts example:

# POSIX
OPTIND=1         # Reset if getopts has been used previously in the shell.
while getopts "h?vf:" opt; do
  case "$opt" in
    h|\?) show_help; exit 0;;
    v) verbose=1;;
    f) output_file=$OPTARG;;
  esac
done
shift $((OPTIND-1))
if [ "$1" = -- ]; then shift; fi
echo "verbose=$verbose, output_file='$output_file', Leftovers: $@"

The disadvantage of getopts is that it can only handle short options (-h), not long options. But it handles -vf filename in the expected Unix way, automatically. So, if one wishes to sacrifice --help to get -vf filename, then getops is a good candidate.

There is a getopts tutorial which explains what all of the syntax and variables mean. In bash, there is also help getopts, which might be informative.

There is also still the disadvantage that options are coded in at least 2, probably 3 places - in the call to getopts, in the case statement that processes them and presumably in the help message that you are going to get around to writing one of these days. This is a classic opportunity for errors to creep in as the code is written and maintained - often not discovered till much, much later.

Silly repeated brute-force scanning

Another approach is to check options with if statements "on demand". A function like this one may be useful:

# Bash
HaveOpt() {
  local needle=$1
  shift
  while [[ $1 == -* ]]; do
    case "$1" in
      --) return 1;; # by convention, -- is end of options
      $needle) return 0;;
    esac
    shift
  done
  return 1
}
if HaveOpt --quick "$@"; then echo "Option quick is set"; fi

and it will work if script is run as:

  • YES: ./script --quick
  • YES: ./script -other --quick

but will stop on first argument with no "-" in front (or on --):

  • NO: ./script -bar foo --quick
  • NO: ./script -bar -- --quick

Of course, this approach (iterating over the argument list every time you want to check for one) is far less efficient than just iterating once and setting flag variables.

It also spreads the options throughout the program. The literal option --quick may appear a hundred lines down inside the main body of the program, nowhere near any other option name. This is a nightmare for maintenance.

Complex nonstandard add-on utilities

bhepple suggests the use of process-getopt (GPL licensed) and offers this example code:

PROG=$(basename $0)
VERSION='1.2'
USAGE="A tiny example using process-getopt(1)"

# call process-getopt functions to define some options:
source process-getopt

SLOT=""
SLOT_func()   { [ "${1:-""}" ] && SLOT="yes"; }      # callback for SLOT option
add_opt SLOT "boolean option" s "" slot

TOKEN=""
TOKEN_func()  { [ "${1:-""}" ] && TOKEN="$2"; }      # callback for TOKEN option
add_opt TOKEN "this option takes a value" t n token number

add_std_opts     # define the standard options --help etc:

TEMP=$(call_getopt "$@") || exit 1
eval set -- "$TEMP" # just as with getopt(1)

# remove the options from the command line
process_opts "$@" || shift "$?"

echo "SLOT=$SLOT"
echo "TOKEN=$TOKEN"
echo "args=$@"

Here, all information about each option is defined in one place making for much easier authoring and maintenance. A lot of the dirty work is handled automatically and standards are obeyed as in getopt(1) - because it calls getopt for you.

  • Actually, what the author forgot to say was that it's actually using getopts semantics, rather than getopt. I ran this test:

     wooledg@wooledg:~/process-getopt-1.6$ set -- one 'rm -rf /' 'foo;bar' "'"
     wooledg@wooledg:~/process-getopt-1.6$ call_getopt "$@"
      -- 'rm -rf /' 'foo;bar' ''\'''
  • It appears to be intelligent enough to handle null options, whitespace-containing options, and single-quote-containing options in a manner that makes the eval not blow up in your face. But this is not an endorsement of the process-getopt software overall; I don't know it well enough. -GreyCat

It's written and tested on Linux where getopt(1) supports long options. For portability, it tests the local getopt(1) at runtime and if it finds an non-GNU one (ie one that does not return 4 for getopt --test) it only processes short options. It does not use the bash builtin getopts(1) command. -bhepple


CategoryShell

BashFAQ/035 (last edited 2024-02-26 07:51:38 by larryv)