Differences between revisions 51 and 65 (spanning 14 versions)
Revision 51 as of 2012-07-18 12:29:30
Size: 11531
Editor: GreyCat
Comment: It could use some trimming, but it's not all noise.
Revision 65 as of 2015-06-18 19:50:26
Size: 9442
Editor: GreyCat
Comment: The #pragma is screwing up numbers on the parent page. I think.
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
#pragma section-numbers 3
Line 4: Line 3:
There are a number of tools available for this. Which one to use depends on a lot of factors, the biggest of which is of course ''what we're editing''. There are a number of techniques for this. Which one to use depends on many factors, the biggest of which is ''what we're editing''.
Line 10: Line 9:
Actually editing files gets even trickier. The only tool listed that actually edits a file is `ed`. The other methods could be used, but to do so involves a temp file and `mv` (or POSIX extensions).

`ed` is the standard UNIX command-based editor. Here are some commonly-used syntaxes for replacing the string `olddomain.com` by the string `newdomain.com` in a file named `file`. All four commands do the same thing, with varying degrees of portability and efficiency:

{{{
Editing files is tricky. The only standard tools that actually edit a file are `ed` and `ex` (`vi` is the visual mode for `ex`). Other methods could be used, but they involve a temp file and `mv` (or nonstandard tools, or extensions to POSIX).

`ed` is the standard UNIX command-based editor. `ex` is another standard command-line editor. Here are some commonly-used syntaxes for replacing the string `olddomain.com` by the string `newdomain.com` in a file named `file`. All four commands do the same thing, with varying degrees of portability and efficiency:

{{{
## Ex
ex -sc '%s/olddomain\.com/newdomain.com/g|x' file

## Ed
Line 31: Line 34:
To replace a string in all files of the current directory: To replace a string in all files of the current directory, just wrap one of the above in a loop:
Line 42: Line 45:
for file in ./**/*; do # Bash 4+ (shopt -s globstar)
for file in ./**; do
Line 53: Line 57:
Since `ex` takes its commands from the command-line, it's less painful to invoke from `find`:

{{{
find . -type f -exec ex -sc '%s/old/new/g|x' {} \;
}}}

Beware though, if your `ex` is provided by `vim`, it may get stuck for files that don't contain an `old`. In that case, you'd add the `e` option to ignore those files. When `vim` is your `ex`, you can also use `argdo` and `find`'s `{} +` to minimize the amount of `ex` processes to run:

{{{
# Bash 4+ (shopt -s globstar)
ex -sc 'argdo %s/old/new/ge|x' ./**

# Bourne
find . -type f -exec ex -sc 'argdo %s/old/new/ge|x' {} +
}}}

If shell variables are used as the search and/or replace strings, ed is not suitable. Nor is sed, or any tool that uses regular expressions. Consider using the awk code at the bottom of this FAQ with redirections, and mv.
{{{
gsub_literal "$search" "$rep" < "$file" > tmp && mv tmp "$file"
}}}

==== Using nonstandard tools ====
Line 57: Line 83:
sed -i '' 's/old/new/g' ./* # BSD

# POSIX sed, uses a temp file and mv:

# remove all temp files on exit, in case sed fails and they weren't moved
trap 'rm -f "${temps[@]}"' EXIT

temps=()
for file in ./*; do
  if [[ -f $file ]]; then
    tmp=$(mktemp) || exit
    temps+=("$tmp")

    sed 's/old/new/g' "$file" > "$tmp" &&
    mv "$tmp" "$file"
  fi
done
sed -i '' 's/old/new/g' ./* # FreeBSD
Line 80: Line 90:
}}}

Moreover, perl can be used to pass variables into both search and replace strings with no unquoting or potential for conflict with sigil characters:

{{{
in="input (/string" out="output string" perl -pi -e $'$quoted_in=quotemeta($ENV{\'in\'}); s/$quoted_in/$ENV{\'out\'}/g' ./*
Line 109: Line 113:
----

All of the tools listed above use regular expressions, which means they have the same issue as the sed code earlier; trying to embed shell variables in them is a terrible idea, and treating an arbitrary value as a literal string is painful at best. This brings us back to our while read loop, or the awk function above.

The while read loop:

{{{
# overwrite a single file
tmp=$(mktemp) || exit
trap 'rm -f "$tmp"' EXIT
All of the examples above use regular expressions, which means they have the same issue as the sed code earlier; trying to embed shell variables in them is a terrible idea, and treating an arbitrary value as a literal string is painful at best.

Moreover, perl can be used to pass variables into both search and replace strings with no unquoting or potential for conflict with sigil characters:

{{{
in="$search" out="$replace" perl -pi -e 's/\Q$ENV{"in"}/$ENV{"out"}/g' ./*
}}}

Or, wrapped in a useful shell function:

{{{
# Bash
# usage: replace FROM TO [file ...]
replace() {
  local in="$1" out="$2"; shift 2
  in="$in" out="$out" perl -p ${1+-i} -e 's/\Q$ENV{"in"}/$ENV{"out"}/g' "$@"
}
}}}

This wrapper passes perl's `-i` option if there are any filenames, so that they are "edited in-place" (or at least as far as perl does such a thing -- see the perl documentation for details).

=== Variables ===

If it's a variable, this can (and should) be done very simply with Bash's parameter expansion:

{{{
var='some string'; search=some; rep=another

# Bash
var=${var//"$search"/$rep}
}}}

It's a lot harder in POSIX:

{{{
# POSIX function

# usage: string_rep SEARCH REPL STRING
# replaces all instances of SEARCH with REPL in STRING
string_rep() {
  # initialize vars
  in=$3
  unset out

  # SEARCH must not be empty
  test -n "$1" || return

  while true; do
    # break loop if SEARCH is no longer in "$in"
    case "$in" in
      *"$1"*) : ;;
      *) break;;
    esac

    # append everything in "$in", up to the first instance of SEARCH, and REP, to "$out"
    out=$out${in%%"$1"*}$2
    # remove everything up to and including the first instance of SEARCH from "$in"
    in=${in#*"$1"}
  done

  # append whatever is left in "$in" after the last instance of SEARCH to out, and print
  printf '%s%s\n' "$out" "$in"
}

var=$(string_rep "$search" "$rep" "$var")

# Note: POSIX does not have a way to localize variables. Most shells (even dash and
# busybox), however, do. Feel free to localize the variables if your shell supports
# it. Even if it does not, if you call the function with var=$(string_rep ...), the
# function will be run in a subshell and any assignments it makes will not persist.
}}}

In the bash example, the quotes around "$search" prevent the contents of the variable to be treated as a shell pattern (also called a [[glob]]). Of course, if pattern matching is intended, do not include the quotes. If "$rep" were quoted, however, the quotes would be treated as literal.

Parameter expansions like this are discussed in more detail in [[BashFAQ/100|Faq #100]].

=== Streams ===

If it's a stream, then use the '''s'''tream '''ed'''itor:

{{{
some_command | sed 's/foo/bar/g'
}}}

`sed` uses [[RegularExpression|regular expressions]]. In our example, `foo` and `bar` are literal strings. If they were variables (e.g. user input), they would have to be rigorously escaped in order to prevent errors. This is very impractical, and attempting to do so will make your code extremely prone to bugs. Embedding shell variables in sed commands is '''never''' a good idea.

You could also do it in Bash itself, by combining a parameter expansion with [[BashFAQ/001|Faq #1]]:
{{{
search=foo; rep=bar
Line 122: Line 205:
done < "$file" > "$tmp" && mv "$tmp" "$file"
}}}

Replaces all files in a directory:

{{{
trap 'rm -f "${temps[@]}"' EXIT

temps=()
for f in ./*; do
  if [[ -f $f ]]; then
    tmp=$(mktemp) || exit
    temps+=("$tmp")

    while IFS= read -r line; do
      printf '%s\n' "${line//"$search"/$rep}"
    done < "$f" > "$tmp" &&
    mv "$tmp" "$f"
  fi
done < <(some_command)

some_command | while IFS= read -r line; do
  printf '%s\n' "${line//"$search"/$rep}"
Line 144: Line 212:
The above glob could be changed to './**/*' in order to use globstar (mentioned above) to be recursive, or of course we could use `find`:

{{{
# this example uses GNU find's -print0. Using POSIX find -exec is left as an exercise to the reader
trap 'rm -f "${temps[@]}"' EXIT

temps=()
while IFS= read -rd '' f <&3; do
  tmp=$(mktemp) || exit
  temps+=("$tmp")

  while IFS= read -r line; do
    printf '%s\n' "${line//"$search"/$rep}"
  done < "$f" > "$tmp" &&
  mv "$tmp" "$f"
done 3< <(find . -type f -print0)
}}}

And of course, we can adapt the `AWK` function above. The following function replaces all instances of STR with REP in FILE, actually overwriting FILE:

{{{
# usage: gsub_literal_f STR REP FILE
# replaces all instances of STR with REP in FILE
gsub_literal_f() {
  local tmp
  # make sure FILE exists, is a regular file, and is readable and writable
  if ! [[ -f $3 && -r $3 && -w $3 ]]; then
    printf '%s does not exist or is not readable or writable\n' "$3" >&2
    return 1
  fi
If you want to do more processing than just a simple search/replace, this may be the best option. Note that the last example runs the loop in a subshell. See [[BashFAQ/024|Faq #24]] for more information on that.

You may notice, however, that the bash loop above is very slow for large data sets. So how do we find something faster, that can replace literal strings? Well, you could use `AWK`. The following function replaces all instances of STR with REP, reading from stdin and writing to stdout.

{{{
# usage: gsub_literal STR REP
# replaces all instances of STR with REP. reads from stdin and writes to stdout.
gsub_literal() {
Line 177: Line 222:

  tmp=$(mktemp) || return
  trap 'rm -f "$tmp"' RETURN
Line 207: Line 249:
  ' "$3" > "$tmp" && mv "$tmp" "$3"
}
}}}

This function, of course, could be called on all of the files in a dir, or recursively.

----

'''Notes:'''

For more information on `sed` or `awk`, you can visit the '''##sed''' and '''#awk''' channels on freenode, respectively.

''mktemp(1)'', used in many of the examples above, is not completely portable. While it will work on most systems, more information on safely creating temp files can be found in [[BashFAQ|Faq #62]].



=== Variables ===

If it's a variable, this can (and should) be done very simply with parameter expansion. Forking an external tool for string manipulation is extremely slow and unnecessary.

{{{
var='some string'; search=some; rep=another

# Bash
var=${var//"$search"/$rep}


# POSIX function

# usage: string_rep SEARCH REPL STRING
# replaces all instances of SEARCH with REPL in STRING
string_rep() {
  # initialize vars
  in=$3
  unset out

  # SEARCH must not be empty
  [[ $1 ]] || return

  while true; do
    # break loop if SEARCH is no longer in "$in"
    case "$in" in
      *"$1"*) : ;;
      *) break;;
    esac

    # append everything in "$in", up to the first instance of SEARCH, and REP, to "$out"
    out=$out${in%%"$1"*}$2
    # remove everything up to and including the first instance of SEARCH from "$in"
    in=${in#*"$1"}
  done

  # append whatever is left in "$in" after the last instance of SEARCH to out, and print
  printf '%s%s\n' "$out" "$in"
}

var=$(string_rep "$search" "$rep" "$var")

# Note: POSIX does not have a way to localize variables. Most shells (even dash and
# busybox), however, do. Feel free to localize the variables if your shell supports
# it. Even if it does not, if you call the function with var=$(string_rep ...), the
# function will be run in a subshell and any assignments it makes will not persist.
}}}

In the bash example, the quotes around "$search" prevent the contents of the variable to be treated as a shell pattern (also called a "glob"). Of course, if pattern matching is intended, do not include the quotes. If "$rep" were quoted, however, the quotes would be treated as literal.

Parameter expansions like this are discussed in more detail in [[BashFAQ/100|Faq #100]].

=== Streams ===

If it's a file or a stream, things get a little bit trickier. The standard tools available for this are `sed` or `AWK` (for streams), and `ed` (for files).

Of course, you could do it in bash itself, by combining the previous method with [[BashFAQ/001|Faq #1]]:
{{{
search=foo; rep=bar

while IFS= read -r line; do
  printf '%s\n' "${line//"$search"/$rep}"
done < <(some_command)

some_command | while IFS= read -r line; do
  printf '%s\n' "${line//"$search"/$rep}"
done
}}}

If you want to do more processing than just a simple search/replace, this may be the best option. Note that the last example runs the loop in a subshell. See [[BashFAQ/024|Faq #24]] for more information on that.

Another option would, of course, be `sed`:

{{{
# replaces all instances of "search" with "replace" in the output of "some_command"
some_command | sed 's/search/replace/g'
}}}

`sed` uses [[RegularExpression|regular expressions]]. Unlike the bash, "search" and "replace" would have to be rigorously escaped in order to treat the values as literal strings. This is very impractical, and attempting to do so will make your code extremely prone to bugs. Embedding shell variables in sed is '''never''' a good idea.

You may notice, however, that the bash loop above is very slow for large data sets. So how do we find something faster, that can replace literal strings? Well, you could use `AWK`. The following function replaces all instances of STR with REP, reading from stdin and writing to stdout.

{{{
# usage: gsub_literal STR REP
# replaces all instances of STR with REP. reads from stdin and writes to stdout.
gsub_literal() {
  # STR cannot be empty
  [[ $1 ]] || return

  # string manip needed to escape '\'s, so awk doesn't expand '\n' and such
  awk -v str="${1//\\/\\\\}" -v rep="${2//\\/\\\\}" '
    # get the length of the search string
    BEGIN {
      len = length(str);
    }

    {
      # empty the output string
      out = "";

      # continue looping while the search string is in the line
      while (i = index($0, str)) {
        # append everything up to the search string, and the replacement string
        out = out substr($0, 1, i-1) rep;

        # remove everything up to and including the first instance of the
        # search string from the line
        $0 = substr($0, i + len);
      }

      # append whatever is left
      out = out $0;

      print out;
    }
Line 348: Line 259:

How can I replace a string with another string in a variable, a stream, a file, or in all the files in a directory?

There are a number of techniques for this. Which one to use depends on many factors, the biggest of which is what we're editing.

Files

Editing files is tricky. The only standard tools that actually edit a file are ed and ex (vi is the visual mode for ex). Other methods could be used, but they involve a temp file and mv (or nonstandard tools, or extensions to POSIX).

ed is the standard UNIX command-based editor. ex is another standard command-line editor. Here are some commonly-used syntaxes for replacing the string olddomain.com by the string newdomain.com in a file named file. All four commands do the same thing, with varying degrees of portability and efficiency:

## Ex
ex -sc '%s/olddomain\.com/newdomain.com/g|x' file

## Ed
# Bash
ed -s file <<< $'g/olddomain\\.com/s//newdomain.com/g\nw\nq'

# Bourne (with printf)
printf '%s\n' 'g/olddomain\.com/s//newdomain.com/g' w q | ed -s file

printf 'g/olddomain\\.com/s//newdomain.com/g\nw\nq' | ed -s file

# Bourne (without printf)
ed -s file <<!
g/olddomain\\.com/s//newdomain.com/g
w
q
!

To replace a string in all files of the current directory, just wrap one of the above in a loop:

for file in ./*; do
    [[ -f $file ]] && ed -s "$file" <<< $'g/old/s//new/g\nw\nq'
done

To do this recursively, the easy way would be to enable globstar in bash 4 (shopt -s globstar, a good idea to put this in your ~/.bashrc) and use:

# Bash 4+ (shopt -s globstar)
for file in ./**; do
    [[ -f $file ]] && ed -s "$file" <<< $'g/old/s//new/g\nw\nq'
done

If you don't have bash 4, you can use find. Unfortunately, it's a bit tedious to feed ed stdin for each file hit:

find . -type f -exec bash -c 'printf "%s\n" "g/old/s//new/g" w q | ed -s "$1"' _ {} \;

Since ex takes its commands from the command-line, it's less painful to invoke from find:

find . -type f -exec ex -sc '%s/old/new/g|x' {} \;

Beware though, if your ex is provided by vim, it may get stuck for files that don't contain an old. In that case, you'd add the e option to ignore those files. When vim is your ex, you can also use argdo and find's {} + to minimize the amount of ex processes to run:

# Bash 4+ (shopt -s globstar)
ex -sc 'argdo %s/old/new/ge|x' ./**

# Bourne
find . -type f -exec ex -sc 'argdo %s/old/new/ge|x' {} +

If shell variables are used as the search and/or replace strings, ed is not suitable. Nor is sed, or any tool that uses regular expressions. Consider using the awk code at the bottom of this FAQ with redirections, and mv.

gsub_literal "$search" "$rep" < "$file" > tmp && mv tmp "$file"

Using nonstandard tools

sed is a Stream EDitor, not a file editor. Nevertheless, people everywhere tend to abuse it for trying to edit files. It doesn't edit files. GNU sed (and some BSD seds) have a -i option that makes a copy and replaces the original file with the copy. An expensive operation, but if you enjoy unportable code, I/O overhead and bad side effects (such as destroying symlinks), this would be an option:

sed -i    's/old/new/g' ./*  # GNU
sed -i '' 's/old/new/g' ./*  # FreeBSD

Those of you who have perl 5 can accomplish the same thing using this code:

perl -pi -e 's/old/new/g' ./*

Recursively using find:

find . -type f -exec perl -pi -e 's/old/new/g' {} \;   # if your find doesn't have + yet
find . -type f -exec perl -pi -e 's/old/new/g' {} +    # if it does

If you want to delete lines instead of making substitutions:

# Deletes any line containing the perl regex foo
perl -ni -e 'print unless /foo/' ./*

To replace for example all "unsigned" with "unsigned long", if it is not "unsigned int" or "unsigned long" ...:

find . -type f -exec perl -i.bak -pne \
    's/\bunsigned\b(?!\s+(int|short|long|char))/unsigned long/g' {} \;

All of the examples above use regular expressions, which means they have the same issue as the sed code earlier; trying to embed shell variables in them is a terrible idea, and treating an arbitrary value as a literal string is painful at best.

Moreover, perl can be used to pass variables into both search and replace strings with no unquoting or potential for conflict with sigil characters:

in="$search" out="$replace" perl -pi -e 's/\Q$ENV{"in"}/$ENV{"out"}/g' ./*

Or, wrapped in a useful shell function:

# Bash
# usage: replace FROM TO [file ...]
replace() {
  local in="$1" out="$2"; shift 2
  in="$in" out="$out" perl -p ${1+-i} -e 's/\Q$ENV{"in"}/$ENV{"out"}/g' "$@"
}

This wrapper passes perl's -i option if there are any filenames, so that they are "edited in-place" (or at least as far as perl does such a thing -- see the perl documentation for details).

Variables

If it's a variable, this can (and should) be done very simply with Bash's parameter expansion:

var='some string'; search=some; rep=another

# Bash
var=${var//"$search"/$rep}

It's a lot harder in POSIX:

# POSIX function

# usage: string_rep SEARCH REPL STRING
# replaces all instances of SEARCH with REPL in STRING
string_rep() {
  # initialize vars
  in=$3
  unset out

  # SEARCH must not be empty
  test -n "$1" || return

  while true; do
    # break loop if SEARCH is no longer in "$in"
    case "$in" in
      *"$1"*) : ;;
      *) break;;
    esac

    # append everything in "$in", up to the first instance of SEARCH, and REP, to "$out"
    out=$out${in%%"$1"*}$2
    # remove everything up to and including the first instance of SEARCH from "$in"
    in=${in#*"$1"}
  done

  # append whatever is left in "$in" after the last instance of SEARCH to out, and print
  printf '%s%s\n' "$out" "$in"
}

var=$(string_rep "$search" "$rep" "$var")

# Note: POSIX does not have a way to localize variables. Most shells (even dash and 
# busybox), however, do. Feel free to localize the variables if your shell supports
# it. Even if it does not, if you call the function with var=$(string_rep ...), the
# function will be run in a subshell and any assignments it makes will not persist.

In the bash example, the quotes around "$search" prevent the contents of the variable to be treated as a shell pattern (also called a glob). Of course, if pattern matching is intended, do not include the quotes. If "$rep" were quoted, however, the quotes would be treated as literal.

Parameter expansions like this are discussed in more detail in Faq #100.

Streams

If it's a stream, then use the stream editor:

some_command | sed 's/foo/bar/g'

sed uses regular expressions. In our example, foo and bar are literal strings. If they were variables (e.g. user input), they would have to be rigorously escaped in order to prevent errors. This is very impractical, and attempting to do so will make your code extremely prone to bugs. Embedding shell variables in sed commands is never a good idea.

You could also do it in Bash itself, by combining a parameter expansion with Faq #1:

search=foo; rep=bar

while IFS= read -r line; do
  printf '%s\n' "${line//"$search"/$rep}"
done < <(some_command)

some_command | while IFS= read -r line; do
  printf '%s\n' "${line//"$search"/$rep}"
done

If you want to do more processing than just a simple search/replace, this may be the best option. Note that the last example runs the loop in a subshell. See Faq #24 for more information on that.

You may notice, however, that the bash loop above is very slow for large data sets. So how do we find something faster, that can replace literal strings? Well, you could use AWK. The following function replaces all instances of STR with REP, reading from stdin and writing to stdout.

# usage: gsub_literal STR REP
# replaces all instances of STR with REP. reads from stdin and writes to stdout.
gsub_literal() {
  # STR cannot be empty
  [[ $1 ]] || return

  # string manip needed to escape '\'s, so awk doesn't expand '\n' and such
  awk -v str="${1//\\/\\\\}" -v rep="${2//\\/\\\\}" '
    # get the length of the search string
    BEGIN {
      len = length(str);
    }

    {
      # empty the output string
      out = "";

      # continue looping while the search string is in the line
      while (i = index($0, str)) {
        # append everything up to the search string, and the replacement string
        out = out substr($0, 1, i-1) rep;

        # remove everything up to and including the first instance of the
        # search string from the line
        $0 = substr($0, i + len);
      }

      # append whatever is left
      out = out $0;

      print out;
    }
  '
}

some_command | gsub_literal "$search" "$rep"


# condensed as a one-liner:
some_command | awk -v s="${search//\\/\\\\}" -v r="${rep//\\/\\\\}" 'BEGIN {l=length(s)} {o="";while (i=index($0, s)) {o=o substr($0,1,i-1) r; $0=substr($0,i+l)} print o $0}'


CategoryShell

BashFAQ/021 (last edited 2022-11-03 23:42:27 by GreyCat)