Differences between revisions 17 and 25 (spanning 8 versions)
Revision 17 as of 2008-10-06 17:35:54
Size: 6074
Editor: 137
Comment:
Revision 25 as of 2009-06-11 17:32:21
Size: 6552
Editor: localhost
Comment: Added -r to EVERY example; changed array population example from IFS=$O to IFS=$oIFS for readability (too similar to 0). [ ferret can't be bothered to login ]
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
[[Anchor(faq1)]]
== How can I read a file line-by-line? ==
<<Anchor(faq1)>>
== How can I read a file (data stream, variable) line-by-line? ==
Use a `while` loop and the `read` command:
Line 4: Line 6:
    while read line     while read -r line
Line 7: Line 9:
    done < "$file" # or <<< "$var" to iterate over a variable     done < "$file"
Line 9: Line 11:

The `-r` option to read prevents backslash interpretation (usually used as a backslash newline pair, to continue over multiple lines). Without this option, any newlines in the input may be discarded. You should always use the `-r` option with read.

[[BASH]] can also iterate over the lines in a variable using a "here string":

{{{
    while read -r line; do
        echo "$line"
    done <<< "$var"
}}}

If your data source is the script's standard input, then you don't need any redirection at all.
Line 14: Line 28:
    while read first_name last_name phone; do     while read -r first_name last_name phone; do
Line 22: Line 36:
    while IFS=: read user pass uid gid gecos home shell; do     while IFS=: read -r user pass uid gid gecos home shell; do
Line 27: Line 41:
For TAB delimited files, use IFS=$'\t'.
Line 30: Line 46:
    while read first_name last_name junk; do     while read -r first_name last_name junk; do
Line 41: Line 57:
    while IFS= read line
    do
        echo "$line"
    done < "$file"
}}}

As a feature, the {{{read}}} command concatenates lines that end with a backslash '\' character to one single line. To disable this feature, KornShell and ["BASH"], as well as the POSIX standard for the Bourne shell, have {{{read -r}}}:

{{{
Line 56: Line 63:
'''Note that reading a file line by line this way is ''very slow'' for large files. Consider using e.g. ["AWK"] instead if you get performance problems.''' '''Note that reading a file line by line this way is ''very slow'' for large files. Consider using e.g. [[AWK]] instead if you get performance problems.'''
Line 62: Line 69:
    some command | while read line; do     some command | while read -r line; do
Line 67: Line 74:
This method is especially useful for processing the output of ''find'' with a block of commands: This method is especially useful for processing the output of `find` with a block of commands:
Line 70: Line 77:
    find . -print0 | while read -d $'\0' file; do     find . -print0 | while read -r -d $'\0' file; do
Line 77: Line 84:
Note the usage of {{{-print0}}} in the find command, which uses NUL bytes as filename delimiters, and {{{-d $'\0'}}} in the read command to instruct it to read all text into the file variable until it finds a NUL byte. By default, find and read delimit their input with newlines; however, since filenames can potentially contain newlines themselves, this default behaviour will split those filenames with newlines up and cause the command block to fail. See [:BashFAQ/020:FAQ #20] for more details. Note the usage of {{{-print0}}} in the find command, which uses NUL bytes as filename delimiters, and {{{-d $'\0'}}} in the read command to instruct it to read all text into the file variable until it finds a NUL byte. By default, `find` and `read` delimit their input with newlines; however, since filenames can potentially contain newlines themselves, this default behaviour will split up those filenames with newlines and cause the loop body to fail. See [[BashFAQ/020|FAQ #20]] for more details.
Line 79: Line 86:
Using a pipe to send find's output into a while loop places the loop in a ''subshell'' and may therefore cause problems later on if the commands inside the body of the loop attempt to set variables which need to be used outside the loop; in that case, see [:BashFAQ/024:FAQ 24], or use process substitution like: Using a pipe to send find's output into a while loop places the loop in a SubShell and may therefore cause problems later on if the commands inside the body of the loop attempt to set variables which need to be used outside the loop; in that case, see [[BashFAQ/024|FAQ 24]], or use ProcessSubstitution like:
Line 82: Line 89:
    while read line; do     while read -r line; do
Line 87: Line 94:
Sometimes it's useful to read a file into an [:BashFAQ/005:array], one array element per line. You can do that with the following example: Sometimes it's useful to read a file into an [[BashFAQ/005|array]], one array element per line. You can do that with the following example:
Line 90: Line 97:
    O=$IFS IFS=$'\n' arr=($(< myfile)) IFS=$O     oIFS=$IFS IFS=$'\n' arr=($(< myfile)) IFS=$oIFS
Line 99: Line 106:
    O=$IFS IFS=$'\n' arr=($(find . -type f)) IFS=$O     oIFS=$IFS IFS=$'\n' arr=($(find . -type f)) IFS=$oIFS
Line 103: Line 110:
Of course, this will blow up in your face if the filenames contain newlines; see [:BashFAQ/020:FAQ 20] for hints on dealing with such filenames. Of course, this will blow up in your face if the filenames contain newlines; see [[BashFAQ/020|FAQ 20]] for hints on dealing with such filenames.
Line 105: Line 112:
Both of these array-stuffing examples fail if the shell encounters a [:glob:] that matches files in the current directory as one of the input lines. Glob expansion can be disabled with `set -f` and then re-enabled afterward with `set +f` if needed. For more details on arrays, see [:BashFAQ/005:FAQ 5]. Moreover, since bash will treat sequences of IFS whitespace as a single character, if the input has empty lines (meaning that groups of two or more consecutive \n characters appear in the file), they will be lost. So, for example: Both of these array-stuffing examples fail if the shell encounters a [[glob]] that matches files in the current directory as one of the input lines. Glob expansion can be disabled with `set -f` and then re-enabled afterward with `set +f` if needed. For more details on arrays, see [[BashFAQ/005|FAQ 5]]. Moreover, since bash will treat sequences of IFS whitespace as a single character, if the input has empty lines (meaning that groups of two or more consecutive \n characters appear in the file), they will be lost. So, for example:
Line 113: Line 120:
    $ O=$IFS IFS=$'\n' arr=($(< myfile)) IFS=$O     $ oIFS=$IFS IFS=$'\n' arr=($(< myfile)) IFS=$oIFS
Line 122: Line 129:
    while IFS= read -r line
    do
        
arr[$i]=$line
        i=$((
i+1))
  done < "$file"       # or  <<< "$var"   to iterate over a variable
    while IFS= read -r arr[i++]; do :;done < "$file"
# or <<< "$var" to iterate over a variable
Line 129: Line 133:
On the other hand, if the file lacks a trailing newline (such as {{{/proc/$$/cmdline}}} on Linux), the line will not be printed by a {{{while read ...}}} loop, as {{{read}}} returns a failure that aborts the while loop, thus failing to print the ultimate line: On the other hand, if the file lacks a trailing newline (such as {{{/proc/$$/cmdline}}} on Linux), the line will not be printed by a {{{while read ...}}} loop, as {{{read}}} returns a failure that aborts the while loop, thus failing to print the ultimate line. It does, however, store the contents of the partial line in the variable, so you can test whether there was such an unterminated line by checking whether the variable is non-empty at the end of the loop:
Line 133: Line 137:
    echo -en 'line 1\ntruncated line 2' | while read line; do echo $line; done     echo -en 'line 1\ntruncated line 2' | while read -r line; do echo $line; done
Line 136: Line 140:
    echo -en 'line 1\ntruncated line 2' | while read line; do echo "$line"; done; echo "$line"     echo -en 'line 1\ntruncated line 2' | while read -r line; do echo "$line"; done; [[ $line ]] && echo -n "$line"
Line 139: Line 143:
    echo -en 'line 1\ntruncated line 2' | (while read line; do echo "$line"; done; echo "$line")     echo -en 'line 1\ntruncated line 2' | (while read -r line; do echo "$line"; done; [[ $line ]] && echo "$line")
Line 141: Line 145:
For a discussion of why the second example above does not work as expected, see [:BashFAQ/024:FAQ #24].
For a discussion of why the second example above does not work as expected, see [[BashFAQ/024|FAQ #24]].

How can I read a file (data stream, variable) line-by-line?

Use a while loop and the read command:

    while read -r line
    do
        echo "$line"
    done < "$file"

The -r option to read prevents backslash interpretation (usually used as a backslash newline pair, to continue over multiple lines). Without this option, any newlines in the input may be discarded. You should always use the -r option with read.

BASH can also iterate over the lines in a variable using a "here string":

    while read -r line; do
        echo "$line"
    done <<< "$var"

If your data source is the script's standard input, then you don't need any redirection at all.

If you want to operate on individual fields within each line, you may supply additional variables to read:

    # Input file has 3 columns separated by white space.
    while read -r first_name last_name phone; do
      ...
    done < "$file"

If the field delimiters are not whitespace, you can set IFS (input field separator):

    while IFS=: read -r user pass uid gid gecos home shell; do
      ...
    done < /etc/passwd

For TAB delimited files, use IFS=$'\t'.

Also, please note that you do not necessarily need to know how many fields each line of input contains. If you supply more variables than there are fields, the extra variables will be empty. If you supply fewer, the last variable gets "all the rest" of the fields after the preceding ones are satisfied. For example,

    while read -r first_name last_name junk; do
      ...
    done <<< 'Bob Smith 123 Main Street Elk Grove Iowa 123-555-6789'
    # Inside the loop, first_name will contain "Bob", and
    # last_name will contain "Smith".  The variable "junk" holds
    # everything else.

The read command modifies each line read, e.g. by default it removes all leading whitespace characters (blanks, tab characters, ... -- basically any leading characters present in IFS). If that is not desired, the IFS variable has to be cleared:

    while IFS= read -r line
    do
        echo "$line"
    done < "$file"

Note that reading a file line by line this way is very slow for large files. Consider using e.g. AWK instead if you get performance problems.

One may also read from a command instead of a regular file:

    some command | while read -r line; do
       other commands
    done

This method is especially useful for processing the output of find with a block of commands:

    find . -print0 | while read -r -d $'\0' file; do
        mv "$file" "${file// /_}"
    done

This command reads one filename at a time from the file command and renames the file so that its spaces are replaced by underscores.

Note the usage of -print0 in the find command, which uses NUL bytes as filename delimiters, and -d $'\0' in the read command to instruct it to read all text into the file variable until it finds a NUL byte. By default, find and read delimit their input with newlines; however, since filenames can potentially contain newlines themselves, this default behaviour will split up those filenames with newlines and cause the loop body to fail. See FAQ #20 for more details.

Using a pipe to send find's output into a while loop places the loop in a SubShell and may therefore cause problems later on if the commands inside the body of the loop attempt to set variables which need to be used outside the loop; in that case, see FAQ 24, or use ProcessSubstitution like:

    while read -r line; do
        other commands
    done < <(some command)

Sometimes it's useful to read a file into an array, one array element per line. You can do that with the following example:

    oIFS=$IFS IFS=$'\n' arr=($(< myfile)) IFS=$oIFS
    # Warning: breaks if lines contain "*" or similar

This temporarily changes the Input Field Separator to a newline, so that each line will be considered one field by read. Then it populates the array arr with the fields. Then it sets the IFS back to what it was before.

This same trick works on a stream of data as well as a file:

    oIFS=$IFS IFS=$'\n' arr=($(find . -type f)) IFS=$oIFS
    # Same warning as the previous example

Of course, this will blow up in your face if the filenames contain newlines; see FAQ 20 for hints on dealing with such filenames.

Both of these array-stuffing examples fail if the shell encounters a glob that matches files in the current directory as one of the input lines. Glob expansion can be disabled with set -f and then re-enabled afterward with set +f if needed. For more details on arrays, see FAQ 5. Moreover, since bash will treat sequences of IFS whitespace as a single character, if the input has empty lines (meaning that groups of two or more consecutive \n characters appear in the file), they will be lost. So, for example:

    $ cat myfile
    line1
    
    line2
    line3
    $ oIFS=$IFS IFS=$'\n' arr=($(< myfile)) IFS=$oIFS
    $ declare -p arr
    declare -a arr='([0]="line1" [1]="line2" [2]="line3")'

In the end, the safest way to read a file into an array is still to use a loop:

    i=0
    while IFS= read -r arr[i++]; do :;done < "$file"
    # or  <<< "$var"  to iterate over a variable 

On the other hand, if the file lacks a trailing newline (such as /proc/$$/cmdline on Linux), the line will not be printed by a while read ... loop, as read returns a failure that aborts the while loop, thus failing to print the ultimate line. It does, however, store the contents of the partial line in the variable, so you can test whether there was such an unterminated line by checking whether the variable is non-empty at the end of the loop:

    # This does not work:
    echo -en 'line 1\ntruncated line 2' | while read -r line; do echo $line; done

    # This does not work either:
    echo -en 'line 1\ntruncated line 2' | while read -r line; do echo "$line"; done; [[ $line ]] && echo -n "$line"

    # This works:
    echo -en 'line 1\ntruncated line 2' | (while read -r line; do echo "$line"; done; [[ $line ]] && echo "$line")

For a discussion of why the second example above does not work as expected, see FAQ #24.

BashFAQ/001 (last edited 2024-11-07 03:19:23 by GreyCat)