Differences between revisions 85 and 111 (spanning 26 versions)
Revision 85 as of 2014-03-03 11:40:36
Size: 5776
Editor: geirha
Comment: Changing echos to printfs, and adding a usage function to the getopts example.
Revision 111 as of 2016-11-30 02:43:23
Size: 5476
Editor: 79
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
#pragma section-numbers 3
Line 9: Line 8:
This approach handles any arbitrary set of options, because you're writing the parser yourself. For 90% of programs, this is the simplest approach (because you rarely need fancy stuff). Manually parsing options without the use of a specialized function is the most flexible approach, and is sufficient for most simple scripts.
Line 11: Line 10:
This example will handle a combination of short and long options. Notice how both "--file" and "--file=FILE" are handled. This example will handle a combination of short (POSIX) and long "GNU style" options with option arguments. Notice how both `--file FILE` and `--file=FILE` are handled. Typical scripts may also use functions and local variables, which can greatly improve your code. This example however illustrates a strictly POSIX conforming script.
Line 15: Line 14:
# (POSIX shell syntax) # POSIX
Line 18: Line 17:
file=""
verbose=0
file=
verbose=0 # Variables to be evaluated as shell arithmetic should be initialized to a default or validated beforehand.
Line 21: Line 20:
while :
do
while :; do
Line 24: Line 22:
        -h | --help | -\?)
            # Call your Help() or usage() function here.
            exit 0 # This is not an error, User asked help. Don't do "exit 1"
        -h|-\?|--help) # Call a "show_help" function to display a synopsis, then exit.
            show_help
            exit
Line 28: Line 26:
        -f | --file)
            file=$2 # You might want to check if you really got FILE
            shift 2
        -f|--file) # Takes an option argument, ensuring it has been specified.
            if [ -n "$2" ]; then
                file=$2
                shift
            else
                printf 'ERROR: "--file" requires a non-empty option argument.\n' >&2
                exit 1
            fi
Line 32: Line 35:
        --file=*)
            file=${1#*=}        # Delete everything up till "="
        shift
        --file=?*)
            file=${1#*=} # Delete everything up to "=" and assign the remainder.
Line 36: Line 38:
        -v | --verbose)
            # Each instance of -v adds 1 to verbosity
            verbose=$((verbose+1))
            shift
        --file=) # Handle the case of an empty --file=
            printf 'ERROR: "--file" requires a non-empty option argument.\n' >&2
            exit 1
Line 41: Line 42:
        --) # End of all options         -v|--verbose)
            verbose=$((verbose + 1)) # Each -v argument adds 1 to verbosity.
            ;;
        --) # End of all options.
Line 45: Line 49:
        -*)
            printf >&2 'WARN: Unknown option (ignored): %s\n' "$1"
           shift
        -?*)
            printf 'WARN: Unknown option (ignored): %s\n' "$1" >&2
Line 49: Line 52:
        *) # no more options. Stop while loop         *)              # Default case: If no more options then break out of the loop.
Line 51: Line 54:
            ;;
Line 53: Line 55:

    shift
Line 55: Line 59:
# Suppose some options are required. Check that we got them.

if [ ! "$file" ]; then
    printf >&2 "ERROR: option '--file FILE' not given. See --help\n"
    exit 1
# if --file was provided, open it for writing, else duplicate stdout
if [ -n "$file" ]; then
    exec 3> "$file"
else
    exec 3>&1
Line 67: Line 71:

Some Bash programmers like to write this at the beginning of their scripts to guard against unused variables:

{{{
    set -u # or, set -o nounset
}}}
The use of this breaks the loop above, as "$1" may not be set upon entering the loop. There are four solutions to this issue:

 1. Stop using `-u`.
 1. Replace `case $1 in` with `case ${1+$1} in` (as well as bandaging all the other code that `set -u` breaks).
 1. Replace `case $1 in` with `case ${1-} in` (every potentially undeclared variable could be written as ${variable-} to prevent `set -u` tripping).
 1. Stop using `-u`.
Line 94: Line 86:
    
Line 100: Line 92:
} }
Line 106: Line 98:
OPTIND=1 # Reset is necessary if getopts was used previously in the script.  It is a good idea to make this local in a function.
while getopts "hvf:" opt; do
    case "$opt" in
OPTIND=1
# Resetting OPTIND is necessary if getopts was used previously in the script.
#
It is a good idea to make OPTIND local if you process options in a function.

while getopts hvf: opt; do
    case $opt in
Line 113: Line 108:
        v) verbose=1         v) verbose=$((verbose+1))
Line 117: Line 112:
        '?')         *)
Line 125: Line 120:
printf 'verbose=<%s>\noutput_file=<%s>\nLeftovers:\n' "$verbose" "$output_file" # Everything that's left in "$@" is a non-option. In our case, a FILE to process.
printf 'verbose=<%d>\noutput_file=<%s>\nLeftovers:\n' "$verbose" "$output_file"
Line 130: Line 126:
The advantages of `getopts` are:
There is a [[http://wiki.bash-hackers.org/howto/getopts_tutorial|getopts tutorial]] which explains what all of the syntax and variables mean. In bash, there is also `help getopts`, which might be informative.

The advantages of `getopts`:
Line 137: Line 136:
The disadvantage of `getopts` is that (except for ksh93 `getopts`) it can only handle short options (`-h`, not `--help`) without trickery and cannot handle options with optional arguments à la GNU.

There is a [[http://wiki.bash-hackers.org/howto/getopts_tutorial|getopts tutorial]] which explains what all of the syntax and variables mean. In bash, there is also `help getopts`, which might be informative.

There is also still the disadvantage that options are coded in at least 2, probably 3 places - in the call to `getopts`, in the case statement that processes them and presumably in the help message that you are going to get around to writing one of these days. This is a classic opportunity for errors to creep in as the code is written and maintained - often not discovered till much, much later. This can be avoided by using callback functions, but this approach kind of defeats the purpose of using getopts at all.
The disadvantages of `getopts`:
 1. (Except for ksh93 `getopts`) it can only handle short options (`-h`, not `--help`) without trickery.
 1. It cannot handle options with optional arguments à la GNU.
 1. Options are coded in at least 2, probably 3 places -- in the call to `getopts`, in the case statement that processes them, and in the help/usage message that documents them.
Line 147: Line 144:
'' CategoryShell '' CategoryShell

How can I handle command-line arguments (options) to my script easily?

Well, that depends a great deal on what you want to do with them. There are several approaches, each with its strengths and weaknesses.

Manual loop

Manually parsing options without the use of a specialized function is the most flexible approach, and is sufficient for most simple scripts.

This example will handle a combination of short (POSIX) and long "GNU style" options with option arguments. Notice how both --file FILE and --file=FILE are handled. Typical scripts may also use functions and local variables, which can greatly improve your code. This example however illustrates a strictly POSIX conforming script.

   1 #!/bin/sh
   2 # POSIX
   3 
   4 # Reset all variables that might be set
   5 file=
   6 verbose=0 # Variables to be evaluated as shell arithmetic should be initialized to a default or validated beforehand.
   7 
   8 while :; do
   9     case $1 in
  10         -h|-\?|--help)   # Call a "show_help" function to display a synopsis, then exit.
  11             show_help
  12             exit
  13             ;;
  14         -f|--file)       # Takes an option argument, ensuring it has been specified.
  15             if [ -n "$2" ]; then
  16                 file=$2
  17                 shift
  18             else
  19                 printf 'ERROR: "--file" requires a non-empty option argument.\n' >&2
  20                 exit 1
  21             fi
  22             ;;
  23         --file=?*)
  24             file=${1#*=} # Delete everything up to "=" and assign the remainder.
  25             ;;
  26         --file=)         # Handle the case of an empty --file=
  27             printf 'ERROR: "--file" requires a non-empty option argument.\n' >&2
  28             exit 1
  29             ;;
  30         -v|--verbose)
  31             verbose=$((verbose + 1)) # Each -v argument adds 1 to verbosity.
  32             ;;
  33         --)              # End of all options.
  34             shift
  35             break
  36             ;;
  37         -?*)
  38             printf 'WARN: Unknown option (ignored): %s\n' "$1" >&2
  39             ;;
  40         *)               # Default case: If no more options then break out of the loop.
  41             break
  42     esac
  43 
  44     shift
  45 done
  46 
  47 # if --file was provided, open it for writing, else duplicate stdout
  48 if [ -n "$file" ]; then
  49     exec 3> "$file"
  50 else
  51     exec 3>&1
  52 fi
  53 
  54 # Rest of the program here.
  55 # If there are input files (for example) that follow the options, they
  56 # will remain in the "$@" positional parameters.

This parser does not handle separate options concatenated together (like -xvf being understood as -x -v -f). This could be added with effort, but this is left as an exercise for the reader.

getopts

Unless it's the version from util-linux, and you use its advanced mode, never use getopt(1). Traditional versions of getopt cannot handle empty argument strings, or arguments with embedded whitespace.

The POSIX shell (and others) offer getopts which is safe to use instead. Here is a simplistic getopts example:

   1 #!/bin/sh
   2 
   3 # Usage info
   4 show_help() {
   5 cat << EOF
   6 Usage: ${0##*/} [-hv] [-f OUTFILE] [FILE]...
   7 Do stuff with FILE and write the result to standard output. With no FILE
   8 or when FILE is -, read standard input.
   9 
  10     -h          display this help and exit
  11     -f OUTFILE  write the result to OUTFILE instead of standard output.
  12     -v          verbose mode. Can be used multiple times for increased
  13                 verbosity.
  14 EOF
  15 }
  16 
  17 # Initialize our own variables:
  18 output_file=""
  19 verbose=0
  20 
  21 OPTIND=1
  22 # Resetting OPTIND is necessary if getopts was used previously in the script.
  23 # It is a good idea to make OPTIND local if you process options in a function.
  24 
  25 while getopts hvf: opt; do
  26     case $opt in
  27         h)
  28             show_help
  29             exit 0
  30             ;;
  31         v)  verbose=$((verbose+1))
  32             ;;
  33         f)  output_file=$OPTARG
  34             ;;
  35         *)
  36             show_help >&2
  37             exit 1
  38             ;;
  39     esac
  40 done
  41 shift "$((OPTIND-1))" # Shift off the options and optional --.
  42 
  43 # Everything that's left in "$@" is a non-option.  In our case, a FILE to process.
  44 printf 'verbose=<%d>\noutput_file=<%s>\nLeftovers:\n' "$verbose" "$output_file"
  45 printf '<%s>\n' "$@"
  46 
  47 # End of file

There is a getopts tutorial which explains what all of the syntax and variables mean. In bash, there is also help getopts, which might be informative.

The advantages of getopts:

  1. It's portable, and will work in any POSIX shell e.g. dash.
  2. It can handle things like -vf filename in the expected Unix way, automatically.

  3. It understands -- as the option terminator and more generally makes sure, options are parsed like for any standard command.

  4. With some implementations, the error messages will be localised in the language of the user.

The disadvantages of getopts:

  1. (Except for ksh93 getopts) it can only handle short options (-h, not --help) without trickery.

  2. It cannot handle options with optional arguments à la GNU.
  3. Options are coded in at least 2, probably 3 places -- in the call to getopts, in the case statement that processes them, and in the help/usage message that documents them.

For other, more complicated ways of option parsing, see ComplexOptionParsing.


CategoryShell

BashFAQ/035 (last edited 2024-02-26 07:51:38 by larryv)