Differences between revisions 19 and 32 (spanning 13 versions)
Revision 19 as of 2013-06-25 23:15:14
Size: 5634
Editor: GreyCat
Comment: Yes, Virginia, it is spelled fflush()
Revision 32 as of 2023-01-09 21:24:39
Size: 6016
Editor: larryv
Comment: alphabetized the table of examples
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
Most standard Unix commands buffer their output when used non-interactively.
This means that they don't write each character (or even each line) immediately,
but instead collect a larger number of characters
(often 4 kilobytes) before printing anything at all.
In the case above, the {{{grep}}} command buffers its output,
and therefore {{{
awk}}} only gets its input in large chunks.
Most standard Unix commands buffer their output when used non-interactively. This means that they don't write each character (or even each line) immediately, but instead collect a larger number of characters (often 4 kilobytes) before printing anything at all. In the case above, the `grep` command buffers its output, and therefore `awk` only gets its input in large chunks.
Line 10: Line 5:
Buffering greatly increases the efficiency of I/O operations,
and it's usually done in a way that doesn't visibly affect the user.
A simple `tail -f` from an interactive terminal session works just fine,
but when a command is part of a complicated pipeline,
the command might not recognize that the final output is needed in (near) real time.
Fortunately, there are several techniques available for controlling I/O buffering behavior.
Buffering greatly increases the efficiency of I/O operations, and it's usually done in a way that doesn't visibly affect the user. A simple `tail -f` from an interactive terminal session works just fine, but when a command is part of a complicated pipeline, the command might not recognize that the final output is needed in (near) real time. Fortunately, there are several techniques available for controlling I/O buffering behavior.
Line 24: Line 14:
{{{ {{{#!highlight bash
Line 27: Line 17:
Line 32: Line 21:
||awk (GNU awk, nawk) ||use the `fflush()` function ||
||awk (mawk) ||`-W interactive` ||
||find (GNU) ||use `-printf` with the `\c` escape ||
||grep (e.g. GNU version 2.5.1) ||`--line-buffered` ||
||jq ||`--unbuffered` ||
||python ||`-u` ||
||sed (e.g. GNU version 4.0.6) ||`-u,--unbuffered` ||
||tcpdump, tethereal ||`-l` ||
Line 33: Line 30:
||grep (e.g. GNU version 2.5.1)||{{{--line-buffered}}}||
||sed (e.g. GNU version 4.0.6)||{{{-u,--unbuffered}}}||
||awk (some GNU versions)||{{{-W interactive, or use the fflush() function}}}||
||tcpdump, tethereal||{{{-l}}}||
Line 40: Line 33:
==== disable buffer in a C application ====
If this belongs to an C application from yourself or you have access to the source, you can disable the buffer with
{{{
==== Disabling buffering in a C application ====
If the buffering application is written in C, and is either your own or one whose source you can modify, you can disable the buffering with:

{{{#!highlight c
Line 45: Line 39:
Often, you can simply add this at the top of the `main()` function, but if the application closes and reopens stdout, or explicitly calls `setvbuf()` later, you may need to exercise more discretion.
Line 47: Line 42:
The [[http://expect.sourceforge.net/|expect]] package has an
[[http://expect.sourceforge.net/example/unbuffer.man.html|unbuffer]]
program which effectively tricks other programs into always behaving
as if they were being used interactively (which may often disable buffering).
Here's a simple example:
{{{
The [[http://expect.sourceforge.net/|expect]] package has an [[http://expect.sourceforge.net/example/unbuffer.man.html|unbuffer]] program which effectively tricks other programs into always behaving as if they were being used interactively (which may often disable buffering). Here's a simple example:

{{{#!highlight bash
Line 58: Line 50:
Recent versions of [[http://www.gnu.org/software/coreutils/|GNU coreutils]] (from 7.5 onwards) come with a nice utility
called [[http://www.gnu.org/software/coreutils/manual/coreutils.html#stdbuf-invocation|stdbuf]], which can be used among other things to "unbuffer" the standard output of a command.
Here's the basic usage for our example:
{{{
Recent versions of [[http://www.gnu.org/software/coreutils/|GNU coreutils]] (from 7.5 onwards) come with a nice utility called [[http://www.gnu.org/software/coreutils/manual/coreutils.html#stdbuf-invocation|stdbuf]], which can be used among other things to "unbuffer" the standard output of a command. Here's the basic usage for our example:

{{{#!highlight bash
Line 64: Line 55:
In the above code, `-oL` makes stdout line buffered; you can even use `-o0` to entirely disable buffering. The man and info pages have all the details.
Line 65: Line 57:
In the above code, "-oL" makes stdout line buffered; you can even use "-o0" to entirely disable buffering. The man
and info pages have all the details.

stdbuf is not a standard POSIX tool, but it may already be installed on your system (if you're using a recent
Linux distribution, it will probably be present).
`stdbuf` is not a standard POSIX tool, but it may already be installed on your system (if you're using a recent GNU/Linux distribution, it will probably be present).
Line 72: Line 60:
If you simply wanted to highlight the search term,
rather than filter out non-matching lines, you can use the `less` program instead of a filtered `tail -f`:
{{{
If you simply wanted to highlight the search term, rather than filter out non-matching lines, you can use the `less` program instead of a filtered `tail -f`:

{{{#!highlight bash
Line 82: Line 70:
"follow" mode is stopped with an interrupt, which is probably control+c on your system.
The '/' command accepts regular expressions,
so you could do things like highlight the entire line on which a term appears.
For details, consult `man less`.
"Follow" mode is stopped with an interrupt, which is probably control+c on your system. The '/' command accepts regular expressions, so you could do things like highlight the entire line on which a term appears. For details, consult `man less`.
Line 88: Line 73:
If you're using ksh or Bash 4.0+,
whatever you're really trying to do with `tail -f` might benefit from using
[[http://wiki.bash-hackers.org/syntax/keywords/coproc|coproc]]
and fflush() to create a coprocess.
Note well that `coproc` does '''not''' itself address buffering issues
(in fact it's prone to buffering problems -- hence the reference to fflush).
`coproc` is only mentioned here because whenever someone is trying to
continuously monitor and react to a still-growing file (or pipe),
they might be trying to do something which would benefit from coprocesses.
If you're using ksh or Bash 4.0+, whatever you're really trying to do with `tail -f` might benefit from using [[http://wiki.bash-hackers.org/syntax/keywords/coproc|coproc]] and fflush() to create a coprocess. Note well that `coproc` does '''not''' itself address buffering issues (in fact it's prone to buffering problems -- hence the reference to fflush). `coproc` is only mentioned here because whenever someone is trying to continuously monitor and react to a still-growing file (or pipe), they might be trying to do something which would benefit from coprocesses.
Line 99: Line 76:

What is buffering? Or, why does my command line produce no output: tail -f logfile | grep 'foo bar' | awk ...

Most standard Unix commands buffer their output when used non-interactively. This means that they don't write each character (or even each line) immediately, but instead collect a larger number of characters (often 4 kilobytes) before printing anything at all. In the case above, the grep command buffers its output, and therefore awk only gets its input in large chunks.

Buffering greatly increases the efficiency of I/O operations, and it's usually done in a way that doesn't visibly affect the user. A simple tail -f from an interactive terminal session works just fine, but when a command is part of a complicated pipeline, the command might not recognize that the final output is needed in (near) real time. Fortunately, there are several techniques available for controlling I/O buffering behavior.

The most important thing to understand about buffering is that it's the writer who's doing it, not the reader.

Eliminate unnecessary commands

In the question, we have the pipeline tail -f logfile | grep 'foo bar' | awk ... (with the actual AWK command being unspecified). There is no problem if we simply run tail -f logfile, because tail -f never buffers its output. Nor is there a problem if we run tail -f logfile | grep 'foo bar' interactively, because grep does not buffer its output if its standard output is a terminal. However, if the output of grep is being piped into something else (such as an AWK command), it starts buffering to improve efficiency.

In this particular example, the grep is actually redundant. We can remove it, and have AWK perform the filtering in addition to whatever else it's doing:

   1 tail -f logfile | awk '/foo bar/ ...'

In other cases, this sort of consolidation may not be possible. But you should always look for the simplest solution first.

Your command may already support unbuffered output

Some programs provide special command line options specifically for this sort of problem:

awk (GNU awk, nawk)

use the fflush() function

awk (mawk)

-W interactive

find (GNU)

use -printf with the \c escape

grep (e.g. GNU version 2.5.1)

--line-buffered

jq

--unbuffered

python

-u

sed (e.g. GNU version 4.0.6)

-u,--unbuffered

tcpdump, tethereal

-l

Each command that writes to a pipe would have to be told to disable buffering, in order for the entire pipeline to run in (near) real time. The last command in the pipeline, if it's writing to a terminal, will not typically need any special consideration.

Disabling buffering in a C application

If the buffering application is written in C, and is either your own or one whose source you can modify, you can disable the buffering with:

   1 setvbuf(stdout, 0, _IONBF, 0);

Often, you can simply add this at the top of the main() function, but if the application closes and reopens stdout, or explicitly calls setvbuf() later, you may need to exercise more discretion.

unbuffer

The expect package has an unbuffer program which effectively tricks other programs into always behaving as if they were being used interactively (which may often disable buffering). Here's a simple example:

   1 tail -f logfile | unbuffer grep 'foo bar' | awk ...

expect and unbuffer are not standard POSIX tools, but they may already be installed on your system.

stdbuf

Recent versions of GNU coreutils (from 7.5 onwards) come with a nice utility called stdbuf, which can be used among other things to "unbuffer" the standard output of a command. Here's the basic usage for our example:

   1 tail -f logfile | stdbuf -oL grep 'foo bar' | awk ...

In the above code, -oL makes stdout line buffered; you can even use -o0 to entirely disable buffering. The man and info pages have all the details.

stdbuf is not a standard POSIX tool, but it may already be installed on your system (if you're using a recent GNU/Linux distribution, it will probably be present).

less

If you simply wanted to highlight the search term, rather than filter out non-matching lines, you can use the less program instead of a filtered tail -f:

   1 $ less program.log
  • Inside less, start a search with the '/' command (similar to searching in vi). Or start less with the -p pattern option.

  • This should highlight any instances of the search term.
  • Now put less into "follow" mode, which by default is bound to shift+f.

  • You should get an unfiltered tail of the specified file, with the search term highlighted.

"Follow" mode is stopped with an interrupt, which is probably control+c on your system. The '/' command accepts regular expressions, so you could do things like highlight the entire line on which a term appears. For details, consult man less.

coproc

If you're using ksh or Bash 4.0+, whatever you're really trying to do with tail -f might benefit from using coproc and fflush() to create a coprocess. Note well that coproc does not itself address buffering issues (in fact it's prone to buffering problems -- hence the reference to fflush). coproc is only mentioned here because whenever someone is trying to continuously monitor and react to a still-growing file (or pipe), they might be trying to do something which would benefit from coprocesses.

Further reading


CategoryShell

BashFAQ/009 (last edited 2024-03-07 20:19:09 by emanuele6)