Differences between revisions 59 and 78 (spanning 19 versions)
Revision 59 as of 2014-10-08 07:09:24
Size: 17378
Editor: 192
Comment:
Revision 78 as of 2024-07-18 13:37:28
Size: 20093
Editor: GreyCat
Comment: remove dead bash-hackers link
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:

---- /!\ '''Edit conflict - other version:''' ----
This answer assumes you have a basic understanding of what arrays ''are''. lol. If you're new to this kind of programming, you may wish to start with [[BashGuide/Arrays|the guide's explanation]]. This page is more thorough. See [[#See_Also|links]] at the bottom for more resources.

---- /!\ '''Edit conflict - your version:''' ----
This answer assumes you have a basic understanding of what arrays ''are''. lol. If you're new to this kind of programming, you may wish to start with [[BashGuide/Arrays|the guide's explanation]]. This page is more thorough. See [[#See_Also|links]] at the bottom for more resources.

---- /!\ '''End of edit conflict''' ----
This answer assumes you have a basic understanding of what arrays ''are''. If you're new to this kind of programming, you may wish to start with [[BashGuide/Arrays|the guide's explanation]]. This page is more thorough. See [[#See_Also|links]] at the bottom for more resources.
Line 16: Line 9:
One-dimensional integer-indexed arrays are implemented by Bash, Zsh, and most KornShell varieties including AT&T ksh88 or later, mksh, and pdksh. Arrays are not specified by POSIX and not available in legacy or minimalist shells such as BourneShell and Dash. The POSIX-compatible shells that do feature arrays mostly agree on their basic principles, but there are some significant differences in the details. Advanced users of multiple shells should be sure to research the specifics. Ksh93, Zsh, and Bash 4.0 additionally have [[BashGuide/Arrays#Associative_Arrays|Associative Arrays]]. This article focuses on indexed arrays as they are the most common and useful type.

Here is a typical usage pattern featuring an array named {{{host}}}:

{{{
One-dimensional integer-indexed arrays are implemented by Bash, Zsh, and most KornShell varieties including AT&T ksh88 or later, mksh, and pdksh. Arrays are not specified by POSIX and not available in legacy or minimalist shells such as BourneShell and Dash. The POSIX-compatible shells that do feature arrays mostly agree on their basic principles, but there are some significant differences in the details. Advanced users of multiple shells should be sure to research the specifics. Ksh93, Zsh, and Bash 4.0 additionally have [[BashGuide/Arrays#Associative_Arrays|Associative Arrays]] (see also [[BashFAQ/006|FAQ 6]]). This article focuses on indexed arrays as they are the most common type.

Basic syntax summary (for bash, math indexed arrays):
||`a=(word1 word2 "$word3" ...)`||Initialize an array from a word list, indexed starting with 0 unless otherwise specified.||
||`a=(*.png *.jpg)`||Initialize an array with filenames.||
||`a[i]=word`||Set one element to `word`, evaluating the value of `i` in a math context to determine the index.||
||`a[i+1]=word`||Set one element, demonstrating that the index is also a math context.||
||`a[i]+=suffix`||Append `suffix` to the previous value of `a[i]` (bash 3.1).||
||`a+=(word ...)` # append||<|2> Modify an existing array without unsetting it, indexed starting at one greater than the highest indexed element unless otherwise specified (bash 3.1).||
||`a+=([3]=word3 word4 [i]+=word_i_suffix)`<<BR>># modify (ormaaj example)||
||`unset 'a[i]'`||Unset one element. Note the mandatory quotes (`a[i]` is a valid [[glob]]).||
||`"${a[i]}"`||Reference one element.||
||`"$(( a[i] + 5 ))"`||Reference one element, in a math context.||
||`"${a[@]}"`||Expand all elements as a list of words.||
||`"${!a[@]}"`||Expand all ''indices'' as a list of words (bash 3.0).||
||`"${a[*]}"`||Expand all elements as a ''single'' word, with the first char of [[IFS]] as separator.||
||`"${#a[@]}"`||Number of elements (size, length).||
||`"${a[@]:start:len}"`||Expand a range of elements as a list of words, cf. [[BashFAQ/100#Extracting_parts_of_strings|string range]].||
||`"${a[@]#trimstart}"` `"${a[@]%trimend}"`<<BR>>`"${a[@]//search/repl}"` etc.||Expand all elements as a list of words, with modifications applied to each element separately.||
||`declare -p a`||Show/dump the array, in a bash-reusable form.||
||`mapfile -t a < stream`||Initialize an array from a stream (bash 4.0).||
||`readarray -t a < stream`||Same as mapfile.||
||`"$a"`||Same as `"${a[0]}"`. '''Does NOT''' expand to the entire array. This usage is considered '''confusing''' at best, but is usually a '''bug'''.||

Here is a typical usage pattern featuring an array named `host`:

{{{#!highlight bash
Line 28: Line 43:
    printf ' Host number %d is %s' "$idx" "${host[idx]}"     printf 'Host number %d is %s\n' "$idx" "${host[idx]}"
Line 31: Line 46:
`"${!host[@]}"` expands to the indices of of the {{{host}}} array, each as a separate argument. (We'll go into more detail on syntax below.)
`"${!host[@]}"` expands to the indices of of the `host` array, each as a separate word.
Line 35: Line 51:
{{{ {{{#!highlight bash
Line 51: Line 67:
Line 56: Line 73:
{{{ {{{#!highlight bash
Line 61: Line 78:
It's possible to assign multiple values to an array at once, but the syntax differs across shells. Bash supports only the {{{arrName=(args...)}}} syntax. ksh88 supports only the {{{set -A arrName -- args...}}} syntax. ksh93, mksh, and zsh support both. There are subtle differences in both methods between all of these shells if you look closely.

{{{

It's possible to assign multiple values to an array at once, but the syntax differs across shells. Bash supports only the `arrName=(args...)` syntax. ksh88 supports only the `set -A arrName -- args...` syntax. ksh93, mksh, and zsh support both. There are subtle differences in both methods between all of these shells if you look closely.

{{{#!highlight bash
Line 67: Line 85:
{{{
{{{#!highlight bash
Line 71: Line 90:
Line 75: Line 95:
{{{ {{{#!highlight bash
Line 79: Line 99:
With ksh88-style assignment using {{{set}}}, the arguments are just ordinary arguments to a command.

{{{

With ksh88-style assignment using `set`, the arguments are just ordinary arguments to a command.

{{{#!highlight bash
Line 85: Line 106:
{{{
{{{#!highlight bash
Line 90: Line 112:
{{{
{{{#!highlight bash
Line 94: Line 117:
Line 97: Line 121:
{{{ {{{#!highlight bash
Line 104: Line 128:
Line 106: Line 131:
`mapfile` handles blank lines by inserting them as empty array elements, and also missing final newlines from the input stream. These can be problematic when reading data in other ways (see the next section). `mapfile` does have one serious drawback: it can ''only'' handle newlines as line terminators. Not all options supported by `read` are handled by `mapfile, and visa-versa. `mapfile` can't, for example, handle NUL-delimited files from `find -print0`. When mapfile isn't available, we have to work '''very hard''' to try to duplicate it. There are a great number of ways to ''almost'' get it right, but fail in subtle ways.

These examples will duplicate most of `mapfile`'s basic functionality:

{{{
# Bash, Ksh93, mksh
`mapfile` handles blank lines by inserting them as empty array elements, and (with `-t`) also silently appends a missing final newline if the input stream lacks one. These can be problematic when reading data in other ways (see the next section). `mapfile` in bash 4.0 through 4.3 does have one serious drawback: it can ''only'' handle newlines as line terminators. Bash 4.4 adds the `-d` option to supply a different line delimiter.

When mapfile isn't available, we have to work '''very hard''' to try to duplicate it. There are a great number of ways to ''almost'' get it right, but many of them fail in subtle ways.

The following examples will duplicate most of `mapfile`'s basic functionality in older shells. '''You can skip all of these alternative examples if you have bash 4.'''

{{{#!highlight bash
# Alternative: Bash 3.1, Ksh93, mksh
unset -v lines
Line 117: Line 145:
Line 119: Line 148:
{{{
# Korn
{{{#!highlight bash
# Alternative: ksh88
Line 123: Line 152:
unset -v lines
Line 124: Line 154:
    lines[i+=1,$i]=$REPLY     lines[i+=1,$i]=$REPLY     # Mimics lines[i++]=$REPLY
Line 128: Line 158:
Line 133: Line 164:
To be clear - most text files ''should'' contain a newline as the last character in the file. Newlines are added to the ends of files by most text editors, and also by [[HereDocument|Here documents]] and [[HereStromg|Here strings]]. Most of the time, this is only an issue when reading output from pipes or process substitutions, or from "broken" text files created with broken or misconfigured tools. Let's look at some examples. To be clear - text files ''should'' contain a newline as the last character in the file. Newlines are added to the ends of files by most text editors, and also by [[HereDocument|Here documents]] and [[HereStromg|Here strings]]. Most of the time, this is only an issue when reading output from pipes or process substitutions, or from "broken" text files created with broken or misconfigured tools. Let's look at some examples.
Line 137: Line 168:
{{{ {{{#!highlight bash
Line 144: Line 175:
Line 146: Line 178:
{{{ {{{#!highlight bash
Line 153: Line 185:
Line 157: Line 190:
{{{
# Bash, ksh93, mksh
{{{#!highlight bash
# Alternative: Bash, ksh93, mksh
Line 165: Line 198:
Line 169: Line 203:
{{{
# Bash
{{{#!highlight bash
# Alternative: Bash
Line 179: Line 213:
Line 186: Line 221:
{{{ {{{#!highlight bash
Line 188: Line 223:
    IFS=$'\n' read -rd '' -a lines <file
}}}
{{{
# mksh,  zsh
    IFS=$'\n' read -rd '' -A lines <file
IFS=$'\n' read -rd '' -a lines <file
}}}

{{{#!highlight bash
# mksh, zsh
IFS=$'\n' read -rd '' -A lines <file
Line 199: Line 235:
If you are trying to deal with records that might have embedded newlines, you will be using an alternative delimiter such as the NUL character ( \0 ) to separate the records. In that case, you'll need to use the `-d` argument to `read` as well:

{{{
If you are trying to deal with records that might have embedded newlines, you will be using an alternative delimiter such as the NUL character ( \0 ) to separate the records. In bash 4.4, you can simply use `mapfile -t -d ''`:

{{{#!highlight bash
# Bash 4.4
mapfile -t -d '' files < <(find . -name '*.ugly' -print0)
}}}

Other
wise, you'll need to use the `-d` argument to `read` inside a loop:

{{{#!highlight bash
Line 212: Line 255:
Line 213: Line 257:

If you choose to give a variable name to `read` instead of using `REPLY` then also be sure to set `IFS=` for the `read` command, to avoid trimming leading/trailing IFS whitespace.
Line 219: Line 265:
{{{ {{{#!highlight bash
Line 223: Line 269:
Line 225: Line 272:
{{{ {{{#!highlight bash
Line 230: Line 277:
Line 232: Line 280:
{{{ {{{#!highlight bash
Line 241: Line 289:
{{{ {{{#!highlight bash
Line 245: Line 293:
Line 252: Line 301:
{{{ {{{#!highlight bash
Line 258: Line 307:
Line 260: Line 310:
{{{ {{{#!highlight bash
Line 263: Line 313:
Line 265: Line 316:
{{{ {{{#!highlight bash
Line 268: Line 319:
Line 272: Line 324:
{{{ {{{#!highlight bash
Line 278: Line 330:
Line 282: Line 335:
{{{ {{{#!highlight bash
Line 286: Line 339:
Line 288: Line 342:
{{{ {{{#!highlight bash
Line 291: Line 345:
IFS=/; echo "${arr[*]}"; unset IFS IFS=/; echo "${arr[*]}"; unset -v IFS
Line 294: Line 348:
Line 296: Line 351:
{{{ {{{#!highlight bash
Line 303: Line 358:
Line 305: Line 361:
{{{ {{{#!highlight bash
Line 311: Line 367:
Line 315: Line 372:
{{{ {{{#!highlight bash
Line 318: Line 375:
unset 'arr[2]' unset -v 'arr[2]'
Line 322: Line 379:
Line 324: Line 382:
{{{ {{{#!highlight bash
Line 326: Line 384:
unset file title artist i unset -v file title artist i
Line 340: Line 398:
Line 343: Line 402:
{{{ {{{#!highlight bash
Line 349: Line 408:
Parameter Expansion can also be used to extract elements from an array. Some people call this ''slicing'':

{{{

Parameter Expansion can also be used to extract sub-lists of elements from an array. Some people call this ''slicing'':

{{{#!highlight bash
Line 355: Line 415:
echo "${@:(-1)}" # last positional parameter
echo "${@:(-2):1}" # second-to-last positional parameter
}}}
}}}

The same goes for positional parameters

{{{#!highlight bash
set -- foo bar baz
echo "${@:(-1)}" # last positional parameter baz
echo "${@:(-2):1}" # second-to-last positional parameter bar
}}}
Line 361: Line 428:
{{{ {{{#!highlight bash
Line 364: Line 431:
if [ -e "$1" ]; then if [ -e "$1" ] || [ -L "$1" ]; then
Line 370: Line 437:
{{{
{{{#!highlight bash
Line 378: Line 446:
Line 381: Line 450:
 * [[http://wiki.bash-hackers.org/syntax/arrays|Bash-hackers array documentation]]

How can I use array variables?

This answer assumes you have a basic understanding of what arrays are. If you're new to this kind of programming, you may wish to start with the guide's explanation. This page is more thorough. See links at the bottom for more resources.

1. Intro

One-dimensional integer-indexed arrays are implemented by Bash, Zsh, and most KornShell varieties including AT&T ksh88 or later, mksh, and pdksh. Arrays are not specified by POSIX and not available in legacy or minimalist shells such as BourneShell and Dash. The POSIX-compatible shells that do feature arrays mostly agree on their basic principles, but there are some significant differences in the details. Advanced users of multiple shells should be sure to research the specifics. Ksh93, Zsh, and Bash 4.0 additionally have Associative Arrays (see also FAQ 6). This article focuses on indexed arrays as they are the most common type.

Basic syntax summary (for bash, math indexed arrays):

a=(word1 word2 "$word3" ...)

Initialize an array from a word list, indexed starting with 0 unless otherwise specified.

a=(*.png *.jpg)

Initialize an array with filenames.

a[i]=word

Set one element to word, evaluating the value of i in a math context to determine the index.

a[i+1]=word

Set one element, demonstrating that the index is also a math context.

a[i]+=suffix

Append suffix to the previous value of a[i] (bash 3.1).

a+=(word ...) # append

Modify an existing array without unsetting it, indexed starting at one greater than the highest indexed element unless otherwise specified (bash 3.1).

a+=([3]=word3 word4 [i]+=word_i_suffix)
# modify (ormaaj example)

unset 'a[i]'

Unset one element. Note the mandatory quotes (a[i] is a valid glob).

"${a[i]}"

Reference one element.

"$(( a[i] + 5 ))"

Reference one element, in a math context.

"${a[@]}"

Expand all elements as a list of words.

"${!a[@]}"

Expand all indices as a list of words (bash 3.0).

"${a[*]}"

Expand all elements as a single word, with the first char of IFS as separator.

"${#a[@]}"

Number of elements (size, length).

"${a[@]:start:len}"

Expand a range of elements as a list of words, cf. string range.

"${a[@]#trimstart}" "${a[@]%trimend}"
"${a[@]//search/repl}" etc.

Expand all elements as a list of words, with modifications applied to each element separately.

declare -p a

Show/dump the array, in a bash-reusable form.

mapfile -t a < stream

Initialize an array from a stream (bash 4.0).

readarray -t a < stream

Same as mapfile.

"$a"

Same as "${a[0]}". Does NOT expand to the entire array. This usage is considered confusing at best, but is usually a bug.

Here is a typical usage pattern featuring an array named host:

   1 # Bash
   2 
   3 # Assign the values "mickey", "minnie", and "goofy" to sequential indexes starting with zero.
   4 host=(mickey minnie goofy)
   5 
   6 # Iterate over the indexes of "host".
   7 for idx in "${!host[@]}"; do
   8     printf 'Host number %d is %s\n' "$idx" "${host[idx]}"
   9 done

"${!host[@]}" expands to the indices of of the host array, each as a separate word.

Indexed arrays are sparse, and elements may be inserted and deleted out of sequence.

   1 # Bash/ksh
   2 
   3 # Simple assignment syntax.
   4 arr[0]=0
   5 arr[2]=2
   6 arr[1]=1
   7 arr[42]='what was the question?'
   8 
   9 # Unset the second element of "arr"
  10 unset -v 'arr[2]'
  11 
  12 # Concatenate the values, to a single argument separated by spaces, and echo the result.
  13 echo "${arr[*]}"
  14 # outputs: "0 1 what was the question?"

It is good practice to write your code in such a way that it can handle sparse arrays, even if you think you can guarantee that there will never be any "holes". Only treat arrays as "lists" if you're certain, and the savings in complexity is significant enough for it to be justified.

2. Loading values into an array

Assigning one element at a time is simple, and portable:

   1 # Bash/ksh
   2 arr[0]=0
   3 arr[42]='the answer'

It's possible to assign multiple values to an array at once, but the syntax differs across shells. Bash supports only the arrName=(args...) syntax. ksh88 supports only the set -A arrName -- args... syntax. ksh93, mksh, and zsh support both. There are subtle differences in both methods between all of these shells if you look closely.

   1 # Bash, ksh93, mksh, zsh
   2 array=(zero one two three four)

   1 # ksh88/93, mksh, zsh
   2 set -A array -- zero one two three four

When initializing in this way, the first index will be 0 unless a different index is specified.

With compound assignment, the space between the parentheses is evaluated in the same way as the arguments to a command, including pathname expansion and WordSplitting. Any type of expansion or substitution may be used. All the usual quoting rules apply within.

   1 # Bash/ksh93
   2 oggs=(*.ogg)

With ksh88-style assignment using set, the arguments are just ordinary arguments to a command.

   1 # Korn
   2 set -A oggs -- *.ogg

   1 # Bash (brace expansion requires 3.0 or higher)
   2 homeDirs=(~{,root}) # brace expansion occurs in a different order in ksh, so this is bash-only.
   3 letters=({a..z})    # Not all shells with sequence-expansion can use letters.

   1 # Korn
   2 set -A args -- "$@"

2.1. Loading lines from a file or stream

In bash 4, the mapfile command (also known as readarray) accomplishes this:

   1 # Bash 4
   2 mapfile -t lines <myfile
   3 
   4 # or
   5 mapfile -t lines < <(some command)

See ProcessSubstitution and FAQ #24 for more details on the <(...) syntax.

mapfile handles blank lines by inserting them as empty array elements, and (with -t) also silently appends a missing final newline if the input stream lacks one. These can be problematic when reading data in other ways (see the next section). mapfile in bash 4.0 through 4.3 does have one serious drawback: it can only handle newlines as line terminators. Bash 4.4 adds the -d option to supply a different line delimiter.

When mapfile isn't available, we have to work very hard to try to duplicate it. There are a great number of ways to almost get it right, but many of them fail in subtle ways.

The following examples will duplicate most of mapfile's basic functionality in older shells. You can skip all of these alternative examples if you have bash 4.

   1 # Alternative: Bash 3.1, Ksh93, mksh
   2 unset -v lines
   3 while IFS= read -r; do
   4     lines+=("$REPLY")
   5 done <file
   6 [[ $REPLY ]] && lines+=("$REPLY")

The += operator, when used together with parentheses, appends the element to one greater than the current highest numbered index in the array.

   1 # Alternative: ksh88
   2 # Ksh88 doesn't support pre/post increment/decrement. mksh and others do.
   3 i=0
   4 unset -v lines
   5 while IFS= read -r; do
   6     lines[i+=1,$i]=$REPLY     # Mimics lines[i++]=$REPLY
   7 done <file
   8 [[ $REPLY ]] && lines[i]=$REPLY

The square brackets create a math context. The result of the expression is the index used for assignment.

2.1.1. Handling newlines (or lack thereof) at the end of a file

read returns false when it reads the last line of a file. This presents a problem: if the file contains a trailing newline, then read will be false when reading/assigning that final line, otherwise, it will be false when reading/assigning the last line of data. Without a special check for these cases, no matter what logic is used, you will always end up either with an extra blank element in the resulting array, or a missing final element.

To be clear - text files should contain a newline as the last character in the file. Newlines are added to the ends of files by most text editors, and also by Here documents and Here strings. Most of the time, this is only an issue when reading output from pipes or process substitutions, or from "broken" text files created with broken or misconfigured tools. Let's look at some examples.

This approach reads the elements one by one, using a loop.

   1 # Doesn't work correctly!
   2 unset -v arr i
   3 while IFS= read -r 'arr[i++]'; do
   4     :
   5 done < <(printf '%s\n' {a..d})

Unfortunately, if the file or input stream contains a trailing newline, a blank element is added at the end of the array, because the read -r arr[i++] is executed one extra time after the last line containing text before returning false.

   1 # Still doesn't work correctly!
   2 unset -v arr i
   3 while read -r; do
   4     arr[i++]=$REPLY
   5 done < <(printf %s {a..c}$'\n' d)

The square brackets create a math context. Inside them, i++ works as a C programmer would expect (in all but ksh88).

This approach fails in the reverse case - it correctly handles blank lines and inputs terminated with a newline, but fails to record the last line of input. If the file or stream is missing its final newline. So we need to handle that case specially:

   1 # Alternative: Bash, ksh93, mksh
   2 unset -v arr i
   3 while IFS= read -r; do
   4     arr[i++]=$REPLY
   5 done <file
   6 [[ $REPLY ]] && arr[i++]=$REPLY # Append unterminated data line, if there was one.

This is very close to the "final solution" we gave earlier -- handling both blank lines inside the file, and an unterminated final line. The null IFS is used to prevent read from stripping possible whitespace from the beginning and end of lines, in the event you wish to preserve them.

Another workaround is to remove the empty element after the loop:

   1 # Alternative: Bash
   2 unset -v arr i
   3 while IFS= read -r 'arr[i++]'; do
   4     :
   5 done <file
   6 
   7 # Remove trailing empty element, if any.
   8 [[ ${arr[i-1]} ]] || unset -v 'arr[--i]'

Whether you prefer to read too many and then have to remove one, or read too few and then have to add one, is a personal choice.

NOTE: it is necessary to quote the 'arr[i++]' passed to read, so that the square brackets aren't interpreted as globs. This is also true for other non-keyword builtins that take a subscripted variable name, such as let and unset.

2.1.2. Other methods

Sometimes stripping blank lines actually is desirable, or you may know that the input will always be newline delimited, such as input generated internally by your script. It is possible in some shells to use the -d flag to set read's line delimiter to null, then abuse the -a or -A (depending on the shell) flag normally used for reading the fields of a line into an array for reading lines. Effectively, the entire input is treated as a single line, and the fields are newline-delimited.

   1 # Bash 4
   2 IFS=$'\n' read -rd '' -a lines <file

   1 # mksh, zsh
   2 IFS=$'\n' read -rd '' -A lines <file

2.1.3. Don't read lines with for!

Never read lines using for..in loops! Relying on IFS WordSplitting causes issues if you have repeated whitespace delimiters, because they will be consolidated. It is not possible to preserve blank lines by having them stored as empty array elements this way. Even worse, special globbing characters will be expanded without going to lengths to disable and then re-enable it. Just never use this approach - it is problematic, the workarounds are all ugly, and not all problems are solvable.

2.2. Reading NUL-delimited streams

If you are trying to deal with records that might have embedded newlines, you will be using an alternative delimiter such as the NUL character ( \0 ) to separate the records. In bash 4.4, you can simply use mapfile -t -d '':

   1 # Bash 4.4
   2 mapfile -t -d '' files < <(find . -name '*.ugly' -print0)

Otherwise, you'll need to use the -d argument to read inside a loop:

   1 # Bash
   2 while read -rd ''; do
   3     arr[i++]=$REPLY
   4 done < <(find . -name '*.ugly' -print0)
   5 
   6 # or (bash 3.1 and up)
   7 while read -rd ''; do
   8     arr+=("$REPLY")
   9 done < <(find . -name '*.ugly' -print0)

read -d '' tells Bash to keep reading until a NUL byte instead of until a newline. This isn't certain to work in all shells with a -d feature.

If you choose to give a variable name to read instead of using REPLY then also be sure to set IFS= for the read command, to avoid trimming leading/trailing IFS whitespace.

2.3. Appending to an existing array

As previously mentioned, arrays are sparse - that is, numerically adjacent indexes are not guaranteed to be occupied by a value. This confuses what it means to "append" to an existing array. There are several approaches.

If you've been keeping track of the highest-numbered index with a variable (for example, as a side-effect of populating an array in a loop), and can guarantee it's correct, you can just use it and continue to ensure it remains in-sync.

   1 # Bash/ksh93
   2 arr[++i]="new item"

If you don't want to keep an index variable, but happen to know that your array is not sparse, then you can use the number of elements to calculate the offset (not recommended):

   1 # Bash/ksh
   2 # This will FAIL if the array has holes (is sparse).
   3 arr[${#arr[@]}]="new item"

If you don't know whether your array is sparse or not, but don't mind re-indexing the entire array (very inefficient), then you can use:

   1 # Bash
   2 arr=("${arr[@]}" "new item")
   3 
   4 # Ksh
   5 set -A arr -- "${arr[@]}" "new item"

If you're in bash 3.1 or higher, then you can use the += operator:

   1 # Bash 3.1, ksh93, mksh, zsh
   2 arr+=(item 'another item')

NOTE: the parentheses are required, just as when assigning to an array. Otherwise you will end up appending to ${arr[0]} which $arr is a synonym for. If your shell supports this type of appending, it is the preferred method.

For examples of using arrays to hold complex shell commands, see FAQ #50 and FAQ #40.

3. Retrieving values from an array

${#arr[@]} or ${#arr[*]} expand to the number of elements in an array:

   1 # Bash
   2 shopt -s nullglob
   3 oggs=(*.ogg)
   4 echo "There are ${#oggs[@]} Ogg files."

Single elements are retrieved by index:

   1 echo "${foo[0]} - ${bar[j+1]}"

The square brackets are a math context. Within an arithmetic context, variables, including arrays, can be referenced by name. For example, in the expansion:

   1 ${arr[x[3+arr[2]]]}

arr's index will be the value from the array x whose index is 3 plus the value of arr[2].

Using array elements en masse is one of the key features of shell arrays. In exactly the same way that "$@" is expanded for positional parameters, "${arr[@]}" is expanded to a list of words, one array element per word. For example,

   1 # Korn/Bash
   2 for x in "${arr[@]}"; do
   3   echo "next element is '$x'"
   4 done

This works even if the elements contain whitespace. You always end up with the same number of words as you have array elements.

If one simply wants to dump the full array, one element per line, this is the simplest approach:

   1 # Bash/ksh
   2 printf "%s\n" "${arr[@]}"

For slightly more complex array-dumping, "${arr[*]}" will cause the elements to be concatenated together, with the first character of IFS (or a space if IFS isn't set) between them. As it happens, "$*" is expanded the same way for positional parameters.

   1 # Bash
   2 arr=(x y z)
   3 IFS=/; echo "${arr[*]}"; unset -v IFS
   4 # prints x/y/z

Unfortunately, you can't put multiple characters in between array elements using that syntax. You would have to do something like this instead:

   1 # Bash/ksh
   2 arr=(x y z)
   3 tmp=$(printf "%s<=>" "${arr[@]}")
   4 echo "${tmp%<=>}"    # Remove the extra <=> from the end.
   5 # prints x<=>y<=>z

Or using array slicing, described in the next section.

   1 # Bash/ksh
   2 typeset -a a=([0]=x [5]=y [10]=z)
   3 printf '%s<=>' "${a[@]::${#a[@]}-1}"
   4 printf '%s\n' "${a[@]:(-1)}"

This also shows how sparse arrays can be assigned multiple elements at once. Note using the arr=([key]=value ...) notation differs between shells. In ksh93, this syntax gives you an associative array by default unless you specify otherwise, and using it requires that every value be explicitly given an index, unlike bash, where omitted indexes begin at the previous index. This example was written in a way that's compatible between the two.

BASH 3.0 added the ability to retrieve the list of index values in an array:

   1 # Bash 3.0 or higher
   2 arr=(0 1 2 3) arr[42]='what was the question?'
   3 unset -v 'arr[2]'
   4 echo "${!arr[@]}"
   5 # prints 0 1 3 42

Retrieving the indices is extremely important for certain kinds of tasks, such as maintaining parallel arrays with the same indices (a cheap way to mimic having an array of structs in a language with no struct):

   1 # Bash 3.0 or higher
   2 unset -v file title artist i
   3 for f in ./*.mp3; do
   4   file[i]=$f
   5   title[i]=$(mp3info -p %t "$f")
   6   artist[i++]=$(mp3info -p %a "$f")
   7 done
   8 
   9 # Later, iterate over every song.
  10 # This works even if the arrays are sparse, just so long as they all have
  11 # the SAME holes.
  12 for i in "${!file[@]}"; do
  13   echo "${file[i]} is ${title[i]} by ${artist[i]}"
  14 done

3.1. Retrieving with modifications

Bash's Parameter Expansions may be performed on array elements en masse:

   1 # Bash
   2 arr=(abc def ghi jkl)
   3 echo "${arr[@]#?}"          # prints bc ef hi kl
   4 echo "${arr[@]/[aeiou]/}"   # prints bc df gh jkl

Parameter Expansion can also be used to extract sub-lists of elements from an array. Some people call this slicing:

   1 # Bash
   2 echo "${arr[@]:1:3}"        # three elements starting at #1 (second element)
   3 echo "${arr[@]:(-2)}"       # last two elements

The same goes for positional parameters

   1 set -- foo bar baz
   2 echo "${@:(-1)}"            # last positional parameter baz
   3 echo "${@:(-2):1}"          # second-to-last positional parameter bar

4. Using @ as a pseudo-array

As we see above, the @ array (the array of positional parameters) can be used almost like a regularly named array. This is the only array available for use in POSIX or Bourne shells. It has certain limitations: you cannot individually set or unset single elements, and it cannot be sparse. Nevertheless, it still makes certain POSIX shell tasks possible that would otherwise require external tools:

   1 # POSIX
   2 set -- *.mp3
   3 if [ -e "$1" ] || [ -L "$1" ]; then
   4   echo "there are $# MP3 files"
   5 else
   6   echo "there are 0 MP3 files"
   7 fi

   1 # POSIX
   2 ...
   3 # Add an option to our dynamically generated list of options
   4 set -- "$@" -f "$somefile"
   5 ...
   6 foocommand "$@"

(Compare to FAQ #50's dynamically generated commands using named arrays.)

See Also


CategoryShell

BashFAQ/005 (last edited 2024-07-18 13:37:28 by GreyCat)